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ABSTRACT 

This study aims to analyze and optimize the operational performance of the pharmaceutical logistics ware-
house at Hospital Yogyakarta using a Discrete Event Simulation (DES) approach. Preliminary observations 
revealed a significant workload accumulation during peak hours (09:00–10:55), leading to drug distribu-
tion delays, a 10–15% weekly discrepancy between physical and system stock data, and a 12% decline in 
patient satisfaction. Data were collected through direct work time measurements and secondary hospital 
records, then modeled using an Activity Cycle Diagram (ACD) and simulated with Arena software. Three 
improvement scenarios were tested: (1) reassigning goods and invoice verification tasks to the ordering 
operator, (2) adding one new operator dedicated to the posting activity in the system, and (3) combining 
both strategies. Simulation results indicate that Alternative III provides the best performance, reducing the 
average cycle time from 411.4 minutes to 65.57 minutes per cycle, improving productivity by up to 99%, 
and achieving balanced workloads among operators. These findings demonstrate that DES-based modeling 
is an effective tool for identifying bottlenecks and designing process improvements without requiring costly 
technological investment. This research contributes to the field of hospital pharmaceutical logistics man-
agement by offering an evidence-based decision-making framework to enhance operational efficiency and 
service quality sustainably. 
 
Keywords: Discrete Event Simulation, Pharmaceutical Logistics, Hospital Warehouse, Operational Optimi-
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INTRODUCTION 

Hospitals play a vital role in ensuring the continuity of healthcare services that are effective, 
efficient, and responsive to patient needs. One of the key determinants of hospital service quality is 
the efficiency of pharmaceutical logistics management, particularly in warehouse operations that 
regulate the flow of medicines and medical supplies [1]. The pharmaceutical warehouse functions as 
a central node connecting procurement, inventory control, and internal distribution [2]. Inefficient 
warehouse operations—characterized by unbalanced workloads, delayed administrative posting, 
and manual coordination—can lead to distribution delays, stockouts, and decreased service reliabil-
ity. Therefore, improving warehouse operational efficiency is critical to maintaining service quality 
and ensuring timely access to essential medicines [3]. 

This study focuses on the pharmaceutical logistics warehouse at Yogyakarta, one of the lead-
ing private hospitals serving the Yogyakarta region. Field observations revealed significant workload 
accumulation during peak hours when operators must simultaneously handle supplier deliveries and 
prepare medicine requests from internal hospital units. This dual workload causes operational bot-
tlenecks, delayed distribution, and frequent stock discrepancies between physical and digital rec-
ords. Empirical time studies show that 411.4 minutes of the 480-minute workday (over 85% of total 
working hours) are consumed by receiving and dispensing activities, leaving only about 68.6 minutes 
for administrative tasks such as data posting and inventory arrangement. Consequently, data mis-
matches between physical and system stock reach 10–15% per week, resulting in delayed prescrip-
tion fulfillment and a 12% decline in patient satisfaction, as reported in the hospital’s 2024 internal 
quality audit. In the long term, this inefficiency may increase operational costs by 8–10% per quarter 
due to duplicated work and slow cross-unit drug distribution. 

The above findings highlight an urgent need to redesign hospital pharmaceutical logistics 
systems to achieve better workload balance and administrative efficiency. In the context of 
healthcare quality reform, speed and accuracy of drug distribution are among the most important 
indicators of hospital performance. Failure to ensure timely medicine availability can disrupt treat-
ment continuity, increase clinical risk, and erode patient trust. Therefore, this research is urgently 
needed to develop an adaptive, data-driven, and cost-effective operational model that allows hospital 
management to optimize logistics performance without requiring high-cost automation technolo-
gies. The outcomes of this study are also aligned with Indonesia’s national agenda to improve hospital 
service quality and operational efficiency in accordance with accreditation standards and public ser-
vice excellence. 

A review of previous studies shows that most prior research emphasizes technology-inten-
sive solutions, such as RFID implementation [4], [5] and logistics automation systems [6], [7], [8], 
which require substantial investment and are impractical for hospitals with limited human and fi-
nancial resources. Conversely, studies exploring human-resource-based optimization and work re-
distribution in hospital pharmaceutical warehouses remain scarce. Most Discrete Event Simulation 
(DES) applications in healthcare have focused on patient flow optimization rather than internal lo-
gistics operations that ensure medicine availability. This indicates a clear empirical and conceptual 
gap in applying DES as a managerial decision-support tool to enhance pharmaceutical warehouse 
efficiency in Indonesian hospitals. Addressing this gap requires context-specific modeling that lever-
ages existing resources rather than relying on large-scale technological intervention. 

This study was conducted collaboratively between the authors from Universitas Pem-
bangunan Nasional “Veteran” Yogyakarta, Indonesia, and Taipei Medical University, Taiwan. This col-
laboration integrates local empirical knowledge of hospital logistics in Indonesia with international 
expertise in simulation-based performance analysis and healthcare supply chain management. The 
study applies a Discrete Event Simulation (DES) approach to analyze and optimize pharmaceutical 
warehouse operations at Hospital Yogyakarta through three improvement scenarios: (1) reallocating 
goods and invoice verification tasks to the ordering operator, (2) adding one new operator dedicated 
to system posting, and (3) combining both strategies. 
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This research lies in developing a resource-based optimization model that enhances effi-
ciency through workload redistribution and minimal staff expansion—without relying on expensive 
automation or advanced digital systems. Academically, this study enriches the literature on DES ap-
plications in hospital logistics within Indonesia, an area that remains underexplored. Practically, it 
provides an evidence-based decision-support framework for hospital management to evaluate oper-
ational bottlenecks, test alternative strategies, and implement cost-effective improvements. The ex-
pected outcome is a measurable reduction in total cycle time by more than 90%, balanced staff utili-
zation, and sustainable enhancement of pharmaceutical logistics performance, demonstrating how 
international collaboration can strengthen healthcare operations research in developing regions. 

 
METHOD 

Research Design 

This study adopts a Discrete Event Simulation (DES) approach to evaluate and optimize the 

operational performance of the pharmaceutical warehouse at Hospital. DES is widely recognized in 

healthcare operations research for its ability to represent process complexity, variability, and re-

source interactions in dynamic systems [9], [10], [11]. 

Study Context 

The research focuses on warehouse activities related to inbound logistics (receiving and ver-

ification of goods) and outbound logistics (dispensing and distribution to hospital units). These pro-

cesses were selected because they represent critical points influencing drug availability and overall 

service quality [12], [13], [14]. 

Data Collection 

Data were collected from two sources: 

• Primary data: direct measurement of operational times using a stopwatch, covering supplier 

arrivals, receiving services, unit requests, and dispensing activities. 

• Secondary data: organizational structures, workflow documents, and hospital records re-

lated to pharmaceutical warehouse operations. 

Data Processing and Input Modeling 

Operational time data were analyzed to identify probability distributions for each activity. 

Distribution fitting was performed using Arena Input Analyzer, ensuring that the stochastic behavior 

of the system was adequately represented [15], [16]. 

 
Figure 1. Data Processing and Input Model  

 

Evaluation of Current 
Warehouse Operations

Conducting an evaluation of the initial simulation results using 
the Discrete Event Simulation (DES) method

Designing Operational 
Alternatives and 

Alternative Simulations

Create several designs for operational alternatives to optimize 
warehouse operations and conduct simulations of the design 
results.

Determining the Best 
Solution for Pharmaceutical 

Warehouse and Logistics 
Operations

Compare the results of each simulation run using Arena 
software and determine the best alternative based on cycle 
time, utility, and productivity values.
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Model Development 

A conceptual model was constructed using an Activity Cycle Diagram (ACD) to map the inter-

actions among processes and resources [17], [18], [19]. The model was then translated into Arena 

simulation software. Verification was carried out using model checking procedures to ensure the ab-

sence of logical or input errors [20], [21], [22]. 

Validation 

Conceptual validation was conducted through discussions with warehouse supervisors to en-

sure model realism. Empirical validation was achieved by comparing simulation outcomes with ac-

tual operational performance metrics [23], [24], [25]. 

Scenario Design 

Three improvement scenarios were designed and simulated: 

1. Task redistribution: assigning goods verification to ordering operators. 

2. Additional staffing: introducing one operator dedicated to system posting. 

3. Hybrid approach: combining task redistribution with additional staffing. 

Performance Metrics 

The performance of each scenario was evaluated using three key indicators: 

• Cycle time: average time required to complete each process. 

• Productivity: ratio of effective output to total input. 

• Resource utilization: measure of operator workload distribution efficiency. 

The comparison of scenarios against the baseline system enabled the identification of the 

most effective and feasible strategy for improving warehouse efficiency and service quality [26], [27]. 

 

RESULTS  

Conceptual Model 
The conceptual model illustrates the workflow of receiving and dispensing processes in the 

hospital pharmaceutical warehouse. This model, presented through an Activity Cycle Diagram (ACD) 
(Figure 2), describes the interaction between different operational activities. Validation was con-
ducted in consultation with the warehouse supervisor, who confirmed that the conceptual represen-
tation accurately reflected the actual system. This validation step ensured that the model could be 
used as the basis for simulation. 
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Figure 2. Pharmaceutical Logistics Warehouse Activity Cycle Diagram 

 
Operational activities were analyzed to determine the most suitable probability distributions 

for simulation input. Table 1 summarizes the fitted distributions for both receiving and dispensing 
processes. For example, the arrival of goods follows a Beta distribution, while the issuance of transfer 
documents is best represented by a Normal distribution. The provision of requested items exhibited 
the highest variability with a Beta distribution and a relatively larger square error value. 

 
Table 1. Distributions for Both Receiving and Dispensing Processes 

 Operational Activities 
Distribu-
tion Types 

Expression 
Square Er-
ror 

Reception  
Department 

Arrival of Goods Beta 
-0.5 + 52 * BETA( 0.644, 
0.976) 

0.007835 

Unloading Goods Beta 2 + 3.62 * BETA( 1.05, 1.24) 0.007856 

Checking Goods and Invoices Beta 2 + 5.89 * BETA( 1.59, 1.31) 0.007926 

Validation Beta 1 + 2.95 * BETA( 1.28, 1.38) 0.012353 
Posting Items on the System Beta 5 + 7 * BETA( 1.13, 1.2) 0.005315 

 Operational Activities Distribu-
tion Types 

Expression Square Er-
ror 

Expenditure 
Section 

Request arrival Beta -0.5 + 87 * BETA( 0.811, 
1.35) 

0.042369 

Issuance of Proof of Transfer 
of Goods 

Normal NORM( 5.94, 1.77) 0.006650 

Providing Ordered Goods Beta 4 + 24 * BETA( 0.77, 1.01) 0.034469 
Handover Weibull 2 + WEIB( 4, 1.54) 

 
0.014761 
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Interpretation: These results indicate that activities involving human interaction and manual 
handling (such as preparing requested items) tend to have longer and more variable cycle times com-
pared to system-driven tasks (such as validation or transfer document issuance). Figure 3 further 
visualizes the distribution fitting for selected processes, confirming the stochastic nature of the data. 

 

 
Figure 3. Distribution Summary of Goods Arrival 

 
Operational time data was analyzed to obtain the most appropriate probabilistic distribution. 

A summary of the fitting results is shown in Table 1. For example, goods arrivals follow a Beta distri-
bution with the equation –0.5 + 52*BETA(0.644;0.976) and a quadratic error of 0.007835, while the 
validation process also follows a Beta distribution with an average time of 2.95 minutes. In the ex-
penditure section, the issuance of goods transfer certificates follows a Normal distribution (5.94; 
1.77), while the handover activity is more consistent with a Weibull distribution. There are nine dis-
tributions representing the main activities of a pharmaceutical warehouse, ranging from goods arri-
val to handover. These fitting results are important inputs in Arena modeling so that simulation be-
havior approximates actual conditions. Figure 4 shows an example of a distribution summary output 
for goods arrival activities. 

The simulation model was constructed from the verified conceptual framework that had been 
reviewed and approved by the pharmaceutical logistics warehouse supervisor. This validation en-
sured that the model accurately reflected the real operational workflow. The final simulation model 
developed for this study is illustrated in Figure 4. 
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(Results in Indonesian) 

Figure 4. Design Simulation Model  
 

This simulation model illustrates an integrated logistics workflow covering both the receiv-
ing and internal distribution of goods in an operational environment such as a hospital or pharma-
ceutical warehouse. Overall, the process is systematically structured, encompassing key stages such 
as goods inspection, invoice validation, quarantine, and system posting. The logical branching 
through decisions like “Goods Suitable?” and “Goods Available?” indicates that the system incorpo-
rates both quality control and inventory management mechanisms. However, the simulation remains 
conceptual since all process durations are recorded as zero, meaning it cannot yet represent real 
working cycle times. Without time parameters and probability inputs, performance indicators such 
as throughput time, idle time, and resource efficiency cannot be measured. Moreover, the presence 
of multiple decision points and process layers may create operational delays if not supported by a 
responsive information system. 

The main potential issues within the model arise in the “Goods Not Suitable” and “Goods Not 
Available” branches. The process of returning unsuitable goods involves several administrative steps, 
such as data recording and revalidation, which can create bottlenecks and lengthen the total receiv-
ing time. Similarly, the “Goods Not Available” condition requires generating new request data and 
initiating a new procurement cycle, leading to longer lead times for internal distribution. Addition-
ally, the absence of a direct feedback mechanism from “Goods Not Suitable” to the supplier results in 
a lack of a closed-loop quality improvement process. In summary, while the model is structurally 
coherent and logically sound, it requires the inclusion of actual time parameters, error probabilities, 
and real-time data integration to accurately represent operational dynamics and identify critical in-
efficiency points in the logistics process. 

Table 2. Among the activities, “providing the requested items” had the highest cycle time of 
837.73 minutes per week, indicating it as the main bottleneck.  
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Table 2. Provides A Quantitative Overview of The Logistics Simulation Results 

Entity Process 
Cycle Time 

(Minutes/Week) 
Number In 

Number 
Out 

Arrival 
Goods 

Unloading Goods 421.34 
117 71 

Checking Goods and Invoices 511.84 

 
Validation 196.32 

  
Posting Items on the System 563.03 

Request 
Goods 

Issuance of Proof of Transfer of Goods 451.27 
76 56 

Providing Ordered Goods 837.73 
Handover 268.91 

Total 3250.44 193 127 

 
The data in Table 2 provides a quantitative overview of the logistics simulation results, show-

ing that the total weekly cycle time reaches 3,250.44 minutes, reflecting a relatively long process 
duration across all stages. The longest activity occurs in preparing ordered goods (837.73 
minutes/week), followed by posting goods into the system (563.03 minutes/week) and checking 
goods and invoices (511.84 minutes/week). These results indicate that the most time-consuming 
processes are related to administrative and system-recording activities, which align with the earlier 
simulation flow that emphasized validation and posting as critical control points. Meanwhile, the 
number of entities processed (Number In = 193; Number Out = 127) shows a significant throughput 
imbalance, suggesting that not all incoming goods are successfully processed and distributed within 
the same week. This discrepancy highlights potential process delays, queue accumulation, or ineffi-
ciencies in the validation and system-entry phases. 

The breakdown between goods arrival and request fulfillment processes also reveals key op-
erational issues. At the goods receiving stage, there is a notable gap between goods checked (117) 
and goods successfully posted in the system (71), implying that about 40% of goods may still be 
pending due to validation or data-entry bottlenecks. Similarly, at the demand fulfillment stage, the 
high cycle time for preparing goods (837.73 minutes) compared to the smaller transaction volume 
(76 in, 56 out) indicates inefficiency in inventory retrieval or internal coordination. These findings 
reinforce that administrative and manual handling processes dominate operational time, reducing 
system responsiveness. To improve efficiency, automation in posting activities, optimized manpower 
allocation in the preparation stage, and real-time synchronization between receiving and dispatch 
units are recommended. Such adjustments would shorten cycle times, balance input–output flow, 
and enhance overall logistics performance consistency. 

 
Design and Running Simulation Proposal  

Figure 5 illustrates the proposed Alternative Model 1, which restructures the goods receiving 
process by assigning the Ordering Operator additional responsibility for inspecting incoming goods 
and verifying invoices. This modification aims to streamline administrative validation, reduce pro-
cess redundancy, and enhance synchronization between procurement and logistics functions. The 
model serves as an initial improvement to address bottlenecks in the early verification phase ob-
served in the baseline process simulation. 
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(Results in Indonesian) 

Figure 5. Alternative Simulation Model I 
 

The Alternative Model 1 introduces a modification to the goods receiving process by assign-
ing the Ordering Operator an additional task — performing both goods and invoice inspections upon 
arrival. This adjustment aims to streamline administrative validation at the early stage of the receiv-
ing process, reduce coordination delays, and ensure that the verification of order accuracy is carried 
out directly by the same personnel responsible for order documentation. By integrating the roles of 
order administration and initial inspection, the model enhances process continuity between procure-
ment and warehouse functions, minimizing communication gaps that often occur when verification 
tasks are split among different departments. 

In terms of advantages, this approach increases efficiency in early validation, as the ordering 
operator has direct access to purchase data and can immediately confirm whether the received goods 
match the purchase order and accompanying invoice. It also minimizes administrative handovers 
and potential document mismatches, leading to faster decision-making at the “Goods Suitable?” stage. 
However, the main drawback lies in the potential workload increase for the ordering operator, who 
now handles both administrative and physical inspection tasks. Without proper time allocation or 
support systems, this role expansion may result in processing delays during peak delivery periods. 
Additionally, if the operator lacks technical knowledge of product specifications, inspection accuracy 
may decrease, potentially allowing nonconforming goods to pass initial validation. Therefore, while 
Alternative 1 strengthens administrative control and shortens process time, it requires proper train-
ing, clear work delegation, and supporting digital tools to maintain accuracy and avoid overburden-
ing the operator. 

Figure 6 presents Alternative Model 2, which enhances the efficiency of the goods posting 
process by introducing an additional operator dedicated to system data entry. This structural adjust-
ment separates administrative tasks from logistical activities, allowing both to occur simultaneously 
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and reducing overall process cycle time. The model aims to improve data accuracy, accountability, 
and synchronization between physical goods handling and digital inventory updates within the lo-
gistics workflow. 
 

 
(Results in Indonesian) 

Figure 6. Alternative Simulation Model II 
 
The Alternative Model 2 focuses on improving the efficiency of the posting process by adding 

a new operator specifically responsible for posting goods into the system. This adjustment addresses 
one of the key bottlenecks identified in the initial model — the accumulation of administrative tasks 
at the data entry stage. In the original workflow, the logistics coordinator handled both physical ver-
ification and system posting, which often led to delays due to task overlap. By introducing a dedicated 
Posting Operator, the model separates administrative posting from physical logistics work, allowing 
both processes to occur simultaneously and reducing the overall cycle time between validation, quar-
antine, and displaying. 

From a performance perspective, this structural change offers several advantages. First, it 
enhances process specialization, as the new operator focuses solely on data accuracy and timely in-
put into the inventory system. This specialization not only improves data consistency but also re-
duces the likelihood of posting errors caused by multitasking. Second, by running posting and logis-
tics activities in parallel, the model increases the system’s overall throughput and responsiveness, 
allowing inventory updates to occur more quickly after goods are validated. Additionally, this config-
uration strengthens accountability because each employee’s responsibility is clearly defined — the 
logistics coordinator focuses on physical movement, while the posting operator ensures digital syn-
chronization. 

However, the potential drawbacks of this model include increased operational costs due to 
the addition of a new employee, as well as the need for coordination between the posting operator 
and the logistics coordinator to prevent data duplication or posting delays. If communication be-
tween these two roles is not well managed, mismatches between physical and digital inventory data 
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may still occur. Furthermore, without a well-integrated system, simultaneous operations could cre-
ate synchronization errors or double postings. In conclusion, while Alternative 2 significantly im-
proves process speed and accuracy through task specialization, its success depends on strong coor-
dination mechanisms and real-time information sharing between logistics and administrative func-
tions to ensure that physical and digital inventory flows remain aligned. 

Figure 7 illustrates Alternative Model 3, which integrates the improvements from both pre-
vious alternatives by combining task reassignment and additional workforce. In this model, the Or-
dering Operator is assigned to inspect goods and verify invoices, while a new Posting Operator is 
added to handle system data entry. This hybrid structure aims to optimize process flow, reduce ad-
ministrative bottlenecks, and enhance both accuracy and efficiency in the goods receiving and post-
ing stages of the logistics operation. 

 
(Results in Indonesian) 

Figure 8. Alternative Simulation Model III 
 

The Alternative Model III represents a comprehensive improvement that combines the 
strengths of Alternative Models I and II. In this configuration, the workflow introduces two critical 
enhancements: (1) assigning the Ordering Operator the additional responsibility of checking the 
goods and invoices upon arrival, and (2) adding a new employee specifically dedicated to posting 
goods into the system. This dual modification aims to reduce process delays caused by task overload 
in earlier models and to ensure that both verification and data-entry activities are carried out effi-
ciently and accurately. The model thus enhances coordination between administrative and logistical 
functions while maintaining the standard 8-hour operational cycle per shift. 

From an analytical perspective, Alternative III demonstrates significant advantages in terms 
of clarity, workload distribution, and system reliability. By delegating the verification of goods and 
invoices to the Ordering Operator, the process ensures that administrative validation occurs imme-
diately after unloading, minimizing idle time and reducing errors before the physical validation stage. 
Meanwhile, assigning a dedicated posting employee improves data accuracy and shortens the overall 
posting duration since the task no longer depends on multitasking personnel. This structure also 
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enables parallel processing between administrative verification, quarantine, and system posting, 
thereby enhancing throughput and reducing bottlenecks. 

However, the model also presents certain potential drawbacks. The addition of a new em-
ployee increases operational costs, and the inclusion of multiple verification layers may initially re-
quire adjustments in coordination and communication flow. Without proper digital synchronization 
between the Operator Posting and the Logistics Coordinator, redundant data entries or system in-
consistencies may still occur. Furthermore, the reliance on manual decision nodes (“Decide 1” and 
“Decide”) means that efficiency still depends on timely human decision-making rather than full auto-
mation. Overall, Alternative III can be considered the most balanced and effective structure among 
the three models—offering higher accuracy, accountability, and workflow efficiency—provided that 
supporting digital systems and coordination protocols are properly implemented. 

 
Alternative Simulation Results 

Table 3 presents the comparison of simulation performance results between the existing real 
system and the proposed alternative models. The evaluation focuses on measuring cycle time effi-
ciency and process throughput (Number In and Number Out) across each activity involved in goods 
receiving and distribution. This analysis aims to identify which alternative scenario provides the 
greatest improvement in operational performance and system productivity. 

 
Table 3. Comparison of Simulation Performance Results 

 Activity 

Cycle Time 
Number 

In 
Number Out 

Real 
Sys-
tem 

I II III 
Real 
Sys-
tem 

I II III 
Real 
Sys-
tem 

I II III 

 

Unloading Goods 3.64 3.62 3.49 3.65 

117 119 109 114 71 107 108 113 

Checking Goods 
and Invoices 

160.90 5.73 17.13 5.24 

Validation 167.11 123.4 14.10 10.32 

Posting Items on 
the System 

162.57 119.8 8.56 8.23 

 
Issuance of Proof 

of Transfer of 
Goods 

5.92 5.73 6.37 5.43 

76 67 66 61 56 60 65 60 Providing Or-
dered Goods 

149.23 108.4 20.1 19.40 

Handover 147.03 105.1 17.04 13.30 

 
The simulation results presented in the table demonstrate that the implementation of the 

three improvement alternatives had a significant impact on operational efficiency, particularly in the 
goods receiving and distribution processes. In the current system, the activities with the longest cycle 
times were goods and invoice inspection (160.90 minutes) and validation (167.11 minutes), which 
served as the primary bottlenecks causing overall process delays. After implementing the proposed 
improvements, cycle times decreased drastically across all alternatives, with Alternative III showing 
the best performance—only 5.24 minutes for inspection and 10.32 minutes for validation. This sub-
stantial reduction indicates that redistributing responsibilities between the ordering operator and 
logistics coordinator, along with the addition of a new operator dedicated to system posting, effec-
tively eliminated task overlap and accelerated administrative verification. Furthermore, the posting 
activity also improved remarkably, reducing from 162.57 minutes to 8.23 minutes, highlighting the 
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efficiency gained through task specialization and improved digital synchronization compared to the 
original centralized workflow. 

From a productivity standpoint, the Number In and Number Out values exhibit better bal-
ance, reflecting an increase in process capacity and smoother material flow. In the real system, there 
was a notable gap between goods received (117 units) and goods processed or dispatched (71 units), 
indicating accumulation delays in administrative and data entry processes. However, under Alterna-
tive III, the number of processed goods rose to 113 units, nearly matching the total input (114 units), 
demonstrating a more stable and efficient throughput. These findings confirm that the combination 
of task redistribution and the addition of a dedicated operator not only shortened processing time 
but also improved synchronization between physical and digital workflows. Therefore, it can be con-
cluded that Alternative III represents the most optimal scenario, achieving over a 90% reduction in 
cycle time compared to the current system while significantly enhancing process balance and 
throughput key indicators of improved efficiency in modern logistics management systems. 

 
DISCUSSION 

The results of this study reveal that the activity of providing the ordered goods constitutes 
the most significant bottleneck in the hospital pharmaceutical warehouse, with an average cycle time 
of 837.73 minutes per week. In contrast, other tasks such as validation require relatively little time 
and therefore do not contribute substantially to delays. This bottleneck is exacerbated during peak 
hours (09:00–10:55) and by the assignment of dual tasks when suppliers (PBF) arrive, namely sim-
ultaneous receiving and checking. Such conditions lead to backlog, delayed distribution, and ulti-
mately stockouts in patient care units. These findings are consistent with [28], [29], who demon-
strated that unbalanced staff allocation is a major cause of bottlenecks in healthcare service flows. 

Simulation experiments with three alternative scenarios indicate that Alternative III a com-
bination of redistributing the checking task to the ordering operator and adding one operator for 
system posting—emerged as the most effective solution. This scenario reduced cycle time, improved 
productivity from 68% to 99%, and decreased excessive staff utilization. These outcomes align with 
[30], who emphasized the importance of process redesign and human resource optimization prior to 
heavy investment in automation technologies [31]. 

From a methodological standpoint, the use of Discrete Event Simulation (DES) proved effec-
tive in identifying bottlenecks and testing improvement scenarios. This supports the systematic re-
view published in Applied Sciences (2023), which highlighted DES as the most widely used method 
in healthcare operations due to its ability to capture process complexity and stochastic demand. 
Model validation with warehouse supervisors, as conducted in this study, further reflects best prac-
tices recommended by [32], stressing stakeholder engagement in the validation stage to ensure man-
agerial acceptance. 

With regard to inventory management, the integration of DES with inventory optimization 
parameters (s, S), as demonstrated by [33], could be a promising extension of this research. Their 
study showed that combining clustering with simulation optimization significantly reduced inven-
tory costs while maintaining service levels. Similarly, [34] in the Indonesian context revealed that 
simulation-based drug inventory models during the COVID 19 pandemic effectively mitigated stock-
outs despite highly fluctuating demand. Thus, coupling the operational warehouse simulation in this 
study with inventory optimization could provide more comprehensive and sustainable recommen-
dations. 

Comparisons with other studies underscore the robustness of these findings. [35], [36], [37] 
observed that task redistribution is often more effective than merely adding staff. [38] found that 
additional staffing is only effective when targeted precisely at bottleneck stations, not dispersed ar-
bitrarily. These findings support the argument that hybrid strategies, such as Alternative III, are su-
perior to redistribution alone (Alternative I) or isolated staffing increases (Alternative II). 
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Other empirical evidence also highlights the value of process redesign [39], studying outpa-
tient pharmacies, reported that better task sequencing reduced patient waiting times by up to 35%. 
[36], [37], [38] further stressed the importance of sensitivity testing to ensure the robustness of so-
lutions under demand surges. Accordingly, the interventions proposed in this study should also be 
tested under scenarios of extreme demand variability to confirm their resilience. 

Attention should also be paid to the risk of bottleneck shifting. [34], [35], [40] cautioned that 
alleviating workload in one activity may inadvertently create new bottlenecks elsewhere if left un-
monitored. In this case, transferring the checking task to the ordering operator could potentially in-
crease workload at the early stage of the process. This underlines the importance of continuous mon-
itoring after implementation, as similarly recommended by [30] in their Lean–DES evaluation of hos-
pital operations. 

Cost implications are another critical consideration. [20] demonstrated that low-cost pro-
cess-based interventions often yield faster return on investment compared to large-scale technology 
adoption. This resonates with the present findings, where Alternative III offers significant perfor-
mance gains at relatively low cost. Nevertheless, the additional salary expense for one new operator 
must be carefully weighed against the time savings and reduced service failures. 

Several limitations of this study should be acknowledged. First, the dataset was based on di-
rect observation over a specific period and may not fully capture seasonal demand variability. Sec-
ond, the model does not yet account for the learning curve effect that arises when staff take on new 
responsibilities. [19] found that task transitions typically involve a temporary decline in performance 
before staff adapt to their new roles. Future research should therefore integrate learning curve dy-
namics and supplier arrival variability into the simulation model. 

Despite these limitations, this research contributes meaningfully to the practice of hospital 
pharmaceutical logistics management. By employing DES, management can quantitatively test alter-
native policies before field implementation, thereby minimizing the risks of trial-and-error ap-
proaches. Such evidence-based decision making is increasingly recognized as essential for modern 
healthcare systems [26][13]. 

 
CONCLUSION 

This study confirms that applying Discrete Event Simulation (DES) is an effective approach 
to analyze and improve the operational efficiency of hospital pharmaceutical warehouses. The simu-
lation results reveal that the main problems in the current system occur during goods checking, val-
idation, and posting activities, which create workload accumulation and distribution delays. Among 
the three proposed improvement scenarios, Alternative III a combination of reassigning verification 
tasks to the ordering operator and adding a new operator for system posting proved to be the most 
optimal solution. This alternative successfully reduced the total process cycle time by more than 
90%, increased productivity by up to 99%, and balanced operator workloads without adding system 
complexity. The findings indicate that performance improvement in pharmaceutical logistics can be 
achieved through work redistribution and human resource optimization rather than through expen-
sive automation technologies. 
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