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ABSTRACT

Distribution Requirement Planning (DRP), and route optimization using the Saving Matrix method. The goal
is to enhance inventory accuracy, minimize logistics costs, and improve delivery efficiency under fluctuating
market demand. A quantitative-descriptive analysis was conducted using primary data (field observation
and interviews) and secondary data (production and sales records). Weekly demand forecasting was per-
formed using the Exponential Smoothing method with a = 0.9, evaluated through Mean Absolute Deviation
(MAD), Mean Squared Error (MSE), and Mean Absolute Percentage Error (MAPE). The DRP model was used
to determine gross and net requirements, while the Saving Matrix method was applied to design optimal
delivery routes. The Exponential Smoothing model achieved a high predictive accuracy (MAPE = 10.33%),
showing reliable short-term forecasting for MSMEs. DRP implementation with a one-week lead time and a
168-unit safety stock successfully balanced production capacity and customer demand. Integration of DRP
and Saving Matrix resulted in approximately 30% reduction in total logistics cost and significant improve-
ment in stock availability. Compared to 17 related studies (2021-2024), this hybrid model demonstrated
superior efficiency and cost stability within traditional food industries. The results provide MSMEs with a
data-driven framework to synchronize production, inventory, and distribution planning, reducing decision-
making errors and improving operational sustainability. The proposed model can serve as a replicable ref-
erence for traditional food SMEs facing fluctuating demand conditions. This study lies in combining Expo-
nential Smoothing forecasting, DRP scheduling, and Saving Matrix routing into a unified optimization frame-
work rarely applied in Indonesia’s traditional food sectors. This integrative method strengthens both aca-
demic insight and managerial practice in MSME supply chain efficiency.
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INTRODUCTION

In the current era of globalization and intense market competition, the success of small and
medium enterprises (SMEs) depends not only on product quality but also on the effectiveness of their
distribution systems. A well-designed distribution system ensures that products reach consumers on
time, in good condition, and with minimal logistics costs. For SMEs, distribution challenges are often
more complex due to limited resources, inadequate infrastructure, and the absence of systematic
planning tools. Inefficient distribution may lead to excessive transportation costs, delivery delays,
and lost sales opportunities, which in turn reduce overall business performance.

The traditional food sector in Indonesia is particularly sensitive to distribution efficiency. One
prominent example is the Rengginang industry in Bandung, a well-known traditional snack made
from glutinous rice, highly favored by both locals and tourists. Demand for Rengginang increases
significantly during holidays and tourism seasons. However, this fluctuating demand is rarely sup-
ported by structured inventory and distribution planning. Most local producers rely on manual and
experience-based scheduling, which results in inconsistencies between product availability and mar-
ket demand. Consequently, product shortages in high-demand areas and excessive stocks in low-de-
mand outlets frequently occur.

Based on empirical data from that case, approximately 25% of the observed periods experi-
enced stock shortages, while 20% showed over-distribution due to poor scheduling and the absence
of systematic demand forecasting. For instance, during June (weeks 3 and 4), product demand
reached 530 and 610 units, while the available supply was only 500 and 550 units, respectively, lead-
ing to unfulfilled customer requests. Comparable conditions were recorded in July and December,
demonstrating a recurring imbalance between demand and inventory levels. This empirical pattern
is highly relevant to the case of Rengginang producers in Bandung, where similar inefficiencies occur
due to irregular scheduling and the lack of route optimization.

To address these issues, scientific approaches are required to enhance decision-making in
demand forecasting and route planning. One relevant approach is the Distribution Requirement Plan-
ning (DRP) method, which determines inventory replenishment needs at each distribution point
based on historical data and demand forecasts. DRP allows producers to maintain optimal stock lev-
els, prevent shortages, and minimize excessive inventory. In parallel, the Saving Matrix method can
be applied to determine the most efficient vehicle routing, reducing both total distance and transpor-
tation costs. Integrating these two methods can improve scheduling accuracy and logistics efficiency
across multiple distribution points.

This study focuses on optimizing the distribution system for Rengginang Bandung products
using the Distribution Requirement Planning (DRP) method for inventory scheduling and the Saving
Matrix method for route optimization. This combination aims to develop a more effective, data-ori-
ented, and cost-efficient distribution system capable of meeting fluctuating customer demands while
minimizing logistics expenses. The study also includes a comparative analysis between current dis-
tribution practices and the proposed optimized model to quantify the potential improvement in cost
and service performance.

Scientifically, this research provides novelty by integrating DRP and Saving Matrix methods
within the context of traditional food SMEs, a sector rarely examined in prior logistics studies. Previ-
ous works have largely focused on large-scale industries such as beverages and processed foods,
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while small-scale producers have been overlooked despite their vital role in local economies. Hence,
this study seeks to bridge that research gap by offering an analytical and applicable model tailored
to the operational realities of Bandung’s traditional snack producers. The findings are expected to
contribute not only to the improvement of SME distribution performance but also to the broader
academic discourse on sustainable supply chain management for local food industries.

METHOD

This study adopts a quantitative descriptive-analytical approach to optimize the distribution
system of Rengginang Bandung by integrating forecasting, inventory scheduling, and route optimi-
zation techniques. The research aims to minimize total distribution cost, improve product availabil-
ity, and enhance delivery efficiency for traditional food SMEs. The methodological framework com-
bines two primary analytical tools—Distribution Requirement Planning (DRP) for inventory and
scheduling optimization, and the Saving Matrix method for route optimization [1], [2]. These meth-
ods are chosen because they have been proven effective in handling multi-location distribution net-
works with fluctuating demand and limited transportation resources [3], [4].

Data collection was carried out through both primary and secondary sources. Primary data
were obtained through field observations of delivery operations, interviews with SME owners and
logistics staff, and direct measurement of travel distances using Google Maps. Meanwhile, secondary
data were collected from company records and production reports, including monthly demand data,
inventory levels, transportation capacity, and distribution costs covering the period from January to
December. The combination of these two data sources provides a comprehensive overview of both
operational and managerial aspects of the Rengginang distribution process.

The research procedure began with a preliminary study and problem identification to define
key inefficiencies such as stock imbalance, inconsistent delivery schedules, and excessive transpor-
tation costs. Once the main issues were identified, demand forecasting was performed using time-
series analysis—particularly the Moving Average and Exponential Smoothing methods—to estimate
future product requirements. The forecasting results served as the input for constructing the DRP
logic table, which determined the gross requirement, safety stock, net requirement, planned order
receipts, and planned order releases for each distribution period. This process ensures that inventory
replenishment at each retail outlet is based on predicted demand rather than intuition.

Following the inventory planning stage, route optimization was conducted using the Saving
Matrix method. The geographical coordinates of warehouses and retail outlets were mapped, and the
distance between points was calculated using the Euclidean distance formula. The Saving Matrix
technique was then applied to identify potential distance savings when combining delivery routes,
allowing the selection of the most efficient route configuration with minimal total travel distance.
This analysis ensures that the delivery fleet operates efficiently, with optimized routes that balance
demand coverage and transportation capacity [5], [6].

After obtaining the optimized routes, a cost analysis was conducted to calculate total logistics
expenditure, including fuel, storage, labor, and administrative costs. The optimized distribution cost
derived from the DRP and Saving Matrix models was compared to the company’s current cost struc-
ture to determine potential cost reductions and efficiency improvements. Finally, a validation and
evaluation phase was carried out by comparing three key performance indicators: total cost savings,
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reduction in delivery time, and fulfillment rate of product demand. These indicators were used to
assess the feasibility and effectiveness of the proposed distribution model [7], [8].

All data processing and calculations were performed using QM for Windows for forecasting
and DRP computations, while Google Maps was employed to obtain accurate distance data for route
optimization. The methodological outcome of this study is a data-driven distribution model that in-
tegrates inventory planning and route optimization to reduce logistics costs and improve delivery
performance. The proposed model is designed to be practical, replicable, and adaptable for small-
scale traditional food enterprises, contributing both academically and practically to the field of sup-
ply chain optimization.

RESULTS

Figure 1 illustrates the weekly demand pattern for Rengginang products over a 52-week ob-
servation period. The data represent the number of customer requests recorded each week and pro-
vide a comprehensive overview of fluctuations in product demand throughout the year. The analysis
of demand patterns serves as a critical foundation for developing accurate forecasting models, deter-
mining production schedules, and optimizing inventory levels. Identifying the temporal variation in
demand is essential to ensure that the production capacity can meet consumer needs efficiently, par-
ticularly during periods of high sales volume.

Rengginang Demand Data Pattern
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Figure 1. Rengginang Demand

As shown in Figure 1, the Rengginang demand trend demonstrates relatively stable behavior
during most of the year, with significant fluctuations occurring during specific weeks. The majority
of weekly demand values range between 400 and 500 units, indicating a consistent baseline demand.
However, a sharp increase is observed around Week 22 to Week 24, reaching a peak of approximately
1,150 requests, before abruptly declining to normal levels. This spike corresponds to seasonal effects,
such as holiday periods or special cultural events, which typically drive temporary surges in con-
sumer purchasing behavior.
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Following this peak, the demand stabilizes once more and exhibits moderate oscillations
around Weeks 30-40, likely influenced by localized promotional activities or restocking patterns in
retail outlets. The recurring fluctuations reflect the combined influence of seasonal demand cycles
and short-term variations, suggesting that the dataset contains both trend and irregular components.

Error Analysis Demand Forecasting

Figure 2 presents the results of demand forecasting analysis for Rengginang products pro-
duced by a Bandung-based Micro, Small, and Medium Enterprise (MSME). The objective of this fore-
casting is to obtain an accurate estimation of future demand levels, which is essential for supporting
effective production planning, raw material procurement, and inventory management. The data used
represent weekly sales records throughout one year, consisting of 52 observation periods that reflect
both stable and fluctuating market conditions.

Accurate forecasting plays a crucial role in the sustainability of MSME operations, as it ena-
bles producers to align production volume with consumer demand, thereby minimizing stock short-
ages and overproduction losses. The forecasting process applied in this study was conducted using
the time-series method implemented through software-based computation, which automatically cal-
culates forecast values and associated error metrics, including Mean Absolute Deviation (MAD),
Mean Squared Error (MSE), and Mean Absolute Percentage Error (MAPE).

o Details and Error Analysis = EI
(untiied) Solution
Demand(y) Forecast Error |Error| Error2 |Pct Error]
400
Past Period 2 390 400 -10 10 100 2,564%
Past Period 3 400 391 9 9 81 2,25%
Past Period 4 400 3991 .9 9 .81 .225%
Past Period 5 400 399 .91 09 09 ,008 J022%
Past Period 6 345 399,991 -54 991 54,991 3024,01 15,939%
Past Period 7 345 350,499 -5,499 5,499 30,24 1,594%
Past Period 8 360 345,55 14,45 14,45 208,806 4,014%
Past Period 9 360 358,555 1,445 1,445 2,088 ,401%
Past Period 10 345 359,856 -14 856 14,856 220,686 4,306%
Past Period 11 350 346,486 3,514 3,514 12,351 1,004%
Past Period 12 355 349,649 5,351 5,351 28,638 1,507%
Past Period 13 360 354,465 5,535 5,535 30,638 1,538%
Past Period 14 350 359,447 -9,446 9 446 89,236 2,699%
Past Period 15 325 350,945 -25,945 25,945 673,124 7.,983%
Past Period 16 310 327,595 -17,594 17,594 309,565 5,676%
Past Period 17 410 311,76 98,241 98,241 9651.203 23,961%
Past Period 18 460 400,176 59,824 59,824 3578,919 13,005%
[Past Perod 19 510 454,015 55,062 55,062 3134,031 10.077%
Past Period 20 520 504,402 15,598 15,598 243,305 3%
Past Period 21 730 518,44 211,56 211,56 44757 55 28,981%
Past Period 22 a70 708,844 261,156 261,156 68202,46 26,923%
Past Period 23 345 943,884 -598,884 598,884 3586625 173,59%
Past Period 24 345 404,888 -59,888 59,888 3586,624 17,359%
Past Period 25 360 350,989 9,011 9.011 81,201 2,503%

Figure 2. Error Analysis Demand Forecasting (a)
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Past Period 26 360 359,099 901 901 812 ,25%
Past Period 27 345 359,91 -14,91 14,91 222 305 4,322%
Past Period 28 350 346,491 3,509 3,509 12,313 1,003%
Past Period 29 355 349,649 5,351 5,351 28,632 1,507%
Past Period 30 360 354,465 5,935 5,935 30,637 1,538%
Past Period 31 350 359,447 -0,447 9,447 89,236 2,699%
Past Period 32 325 350,945 -25,945 25,945 673,124 7.983%
Past Period 33 310 327,595 -17,594 17,594 309,565 5,676%
Past Period 34 410 311,76 98,241 98,241 9651,203 23,961%
Past Period 35 490 400,176 89,624 80,824 8068,363 18,331%
Past Period 36 470 481,018 -11,018 11,018 121,387 2,344%
Past Period 37 480 471,102 8,898 8,898 79,179 1,854%
Past Period 38 470 479,11 -9,11 9,11 82,995 1,938%
Past Period 39 430 470,911 -40,911 40,911 1673,711 9,514%
Past Period 40 345 434,091 -89,091 89,091 7937,223 25,824%
Past Period 41 345 353,909 -8,909 8,909 79,372 2,582%
Past Period 42 360 345,891 14,109 14,109 199,067 3,919%
Past Period 43 360 358,589 1,411 1,411 1,991 ,392%
Past Period 44 345 359,859 -14,859 14,859 220,787 4,307%
Past Period 45 350 346,486 3,514 3,514 12,349 1,004%
Past Period 46 355 349,649 5,351 5,351 28,638 1,507%
Past Period 47 360 354,465 5,535 5,535 30,638 1,538%
Past Period 48 350 359,447 -9,446 9,446 89,236 2,699%
Past Period 49 325 350,945 -25,945 25,945 673,124 7,983%
Past Period 50 310 327,595 -17,594 17,594 309,565 5,676%
Past Period 51 410 311,76 98,241 98,241 9651,203 23,961%
TOTALS 20165 ,196 2183,961 536985,7 516,333%
AVERAGE 395,392 ,004 43,679 10739,71 10,327%
Next period forecast 400,176 (Bias) (MAD) (MSE) (MAPE)
Std err 105,77

Figure 2. Error Analysis Demand Forecasting (b)

1. Purpose of Error Analysis

The error evaluation process is conducted to measure the accuracy and reliability of the fore-
casting model applied to the Rengginang demand dataset. By comparing actual demand (Demand(y))
with predicted values (Forecast), several error indicators are calculated, including Mean Absolute
Deviation (MAD), Mean Squared Error (MSE), and Mean Absolute Percentage Error (MAPE). These
metrics provide quantitative evidence of how closely the model predicts actual observations, forming
the basis for determining the forecasting model’s suitability for production planning and inventory
control.
2. Forecasting Performance Overview

The results presented in the Details and Error Analysis table indicate that the forecasted de-
mand fluctuates closely around the actual demand for most periods, except during weeks corre-
sponding to sudden market spikes (Weeks 22-25). The calculated values are as follows:
Mean Absolute Deviation (MAD) = 43.679
Mean Squared Error (MSE) = 107,939.71
Mean Absolute Percentage Error (MAPE) =10.327%

According to forecasting accuracy standards (Makridakis et al., 2020), a MAPE below 10%-
15% is considered highly accurate for short-term demand forecasting. Hence, the obtained results
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demonstrate that the applied model effectively captures general demand patterns while maintaining
acceptable prediction error levels.
3. Error Distribution and Interpretation

A detailed inspection of individual period errors reveals several noteworthy behaviors:

The model performs accurately during stable demand phases (Periods 1-18), with error values be-
low =20 units and Pct Error averaging 2-5%.

Larger deviations occur during Periods 21-23, where actual demand spiked above 700-900
units. In these cases, errors exceed 200 units, producing localized MAPE values above 20-26%. This
divergence is typical in time-series models exposed to irregular demand shocks. Following the de-
mand surge, error magnitudes return to normal ranges (below 10%) after Period 30, confirming the
model’s adaptability to stabilize after extreme fluctuations.

4. Forecasting Implications for Production Management

The model’s next-period forecast is 400.176 units, representing the expected short-term de-
mand for Rengginang. This value can be used to guide production scheduling, ensuring sufficient raw
material procurement without overstocking. Given the model’s low MAPE and balanced bias, it is
suitable for operational forecasting within stable market periods.

However, for strategic planning—especially during high-demand events—management
should employ supplementary models capable of detecting trend shifts. Incorporating historical
event markers (e.g., festive seasons, marketing promotions) or external variables (weather, holidays)
can further enhance predictive precision.

Method: Exponeritial smooihing -alpha=0.9

Demand(y) Data .

900
800

Forecasts — o

N

|I|I
11 13 16 17 19 21 23 26 27 29 31 33 35 37 39 41 43 45 47 49 51
Time

Figure 3. Best Forecasting Results

Figure 3 illustrates the forecasting results obtained using the Exponential Smoothing method
with a smoothing constant () of 0.9, which gives greater weight to recent data observations. This
model was chosen to emphasize short-term demand fluctuations while maintaining a responsive ad-
justment to sudden market changes. The plotted lines show both the actual demand (Data) and the
forecasted values (Forecasts) across 52 time periods, representing weekly demand behavior over
one year.

As depicted in Figure 3, the forecasting model successfully follows the general pattern of the
actual demand data. The demand remains relatively stable at an average of 400-450 units during
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most weeks but experiences two noticeable spikes—one major increase occurring around Week 22
and a smaller one near Week 36. The large surge corresponds to a peak period, likely influenced by
holiday or festive consumption patterns. The exponential smoothing model captures this upward
trend effectively, although slight lagging occurs at the peak point due to the model’s inherent smooth-
ing nature.

After the sharp increase, demand rapidly declines to baseline levels, demonstrating the
model’s ability to adapt quickly to downward changes. The close alignment between the actual and
forecasted curves during stable periods indicates that the a = 0.9 parameter provides an appropriate
level of responsiveness for MSME-scale forecasting. This performance is further validated by low
forecast error metrics (MAPE = 10.33%), confirming the model’s high accuracy and consistency.

Rengginang Demand and Forecast

1200
== Actual

1000
= = = Forecast

800

600

SodOdd .
vovye 00900000

400 —

200 MAD = 43.679
0 MSE = 107,939.71
MAPE =10.327%
1 357 91151719 212325 2729 31333537 394143 45 47 49 51
Week
MAD =43.769 MAPE =10,327%

Number of Requests

Figure 4. Rengginang Demand and Forecast

Based on the forecasting results shown in Figure 4, the demand pattern for Rengginang ex-
hibits a generally stable trend with several notable fluctuations across the 52-week observation pe-
riod. The actual demand remains within the range of 400-500 units per week, with a sharp increase
observed around Week 23, reaching more than 1,000 units, followed by a smaller peak near Week
37. The forecasting results obtained through the Exponential Smoothing method with a smoothing
constant of a = 0.9 effectively capture the overall trend of actual demand, despite minor lagging dur-
ing peak periods due to the smoothing effect. The model demonstrates a strong adaptive response
following demand surges, as indicated by the forecast curve realigning closely with the actual de-
mand values in subsequent weeks.

Quantitatively, the forecasting accuracy is considered high, with MAD = 43.679, MSE =
107,939.71, and MAPE = 10.327%, indicating a low level of prediction error. A MAPE value below
15% confirms that the model performs reliably for short-term forecasting applications. The relatively
small deviations across most periods show that the Exponential Smoothing approach successfully
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represents market demand variations with consistent precision. Therefore, the results of this fore-
casting analysis can serve as a basis for operational decision-making, particularly in determining pro-
duction volume, scheduling raw material procurement, and managing inventory levels for Reng-
ginang MSMEs in Bandung.

Distribution Requirement Planning

Table 1 presents the results of the Material Requirements Planning (MRP) using the Lot-for-
Lot (LFL) method with a one-week lead time and safety stock of 168 units. This approach aligns ma-
terial ordering with weekly production demand to minimize inventory costs while ensuring material
availability. The table shows the relationship between gross requirements, on-hand stock, and
planned order releases throughout the year, providing a clear scheduling framework for MSMEs to
plan raw material procurement efficiently according to demand fluctuations.

Table 1. Distribution Requirement Planning

Order policy
Safety Stock : 168 lead time: 1 week
Lot Size : Lot for lot PD January February March April
1 2 3 4 5 1 2 3 4 1 2 3 4 1 2 3 4
Gross Requirements (Gr) 400 400 391 399 400 400 350 346 359 360 346 350 354 359 351 328 312
Scheduled Receipts (SR)
Projected On Hand (POH) 300 126 126 126 126 126 126 126 126 126 126 126 126 126 126 126 126 126
Net Requirements (NR) 269 443 434 442 443 443 393 389 402 403 389 393 397 402 394 371 355
Planned Order Receipts 226 400 391 399 400 400 350 346 359 360 346 350 354 359 351 328 312
Planned Order Releases 226 400 391 399 400 400 350 346 359 360 346 350 354 359 351 328 312 400
Lot Size : Lot For Lot May June July August
i 2 3 4 5 1 2 3 4 1 2 3 4 1 2 3 4
Gross Requirements (Gr) 400 454 504 518 709 944 405 351 360 360 346 350 354 359 351 326 312
Scheduled Receipts (SR)
Projected On Hand (POH) 126 126 126 126 126 126 126 126 126 126 126 126 126 126 126 126 126
Net Requirements (NR) 443 497 547 561 752 987 448 394 403 403 389 393 397 402 394 369 355
Planned Order Receipts 400 454 504 518 709 944 405 351 360 360 346 350 354 359 351 326 312
Planned Order Releases 454 504 518 709 944 405 351 360 360 346 350 354 359 351 326 312 400
Lot Size : Lot For Lot September Oktober November December
1 2 3 4 5 1 2 3 4 1 2 3 4 1 2 3 4
Gross Requirements (Gr) 400 454 504 518 709 944 405 351 360 360 346 350 354 359 351 326 312
Scheduled Receipts (SR)
Projected On Hand (Poh) 126 126 126 126 126 126 126 126 126 126 126 126 126 126 126 126 126
Net Requirements (NR) 443 497 547 561 752 987 448 394 403 403 389 393 397 402 394 369 355
Planned Order Receipts 400 454 504 518 709 944 405 351 360 360 346 350 354 359 351 326 312
Planned Order Releases 454 504 518 709 944 405 351 360 360 346 350 354 359 351 326 312 0

Based on the lot-sizing analysis presented in Table 1, the lot-for-lot (LFL) ordering policy with

a one-week lead time and safety stock of 168 units produces a structured replenishment plan that
aligns material availability with weekly demand fluctuations. The gross requirements range between
300 and 709 units per week, with net requirements (NR) adjusting according to on-hand inventory
levels and scheduled receipts. During high-demand months such as May to July, the projected net
requirements increase significantly, reaching a peak of 752 units in Week 3 of June, which requires a
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corresponding planned order release of 709-754 units in the preceding weeks. Conversely, in lower-
demand periods like November to December, the planned order releases stabilize around 312-359
units, reflecting an efficient balance between production capacity and market needs.

For practical implementation, MSMEs in Bandung producing Rengginang should apply the
lot-for-lot policy to minimize holding costs while ensuring timely fulfillment of weekly demand. Main-
taining a minimum on-hand stock of 126-168 units is essential to cover safety requirements and
buffer against demand uncertainty. The data also suggest that during peak months, production
should be increased to at least 700 units per week to prevent shortages, whereas in low-demand
months, production can be reduced to 300-350 units to optimize resource utilization. By adhering to
this ordering schedule, the MSME can achieve a steady production rhythm, reduce excess inventory,
and ensure consistent product availability in the market throughout the year.

DISCUSSION

The results of this study reveal that the Exponential Smoothing forecasting model with a
smoothing constant of 0.9 achieved a high level of predictive accuracy, reflected by a MAPE value of
10.33%, MAD of 43.679, and MSE of 107,939.71. These results demonstrate a consistent and reliable
short-term forecasting performance, particularly suitable for MSMEs with fluctuating demand pat-
terns. This finding aligns with [9], [10], who reported MAPE values below 12% when applying Expo-
nential Smoothing to snack demand forecasting in Yogyakarta. Similarly, [11], [12] found that
smoothing constants between 0.8 and 0.9 produced optimal responsiveness to market fluctuations
in the Batik Pekalongan industry.

Compared to prior research, the Rengginang Bandung case demonstrates a higher accuracy
rate than the models applied by [13], [14] on cassava chips production (MAPE 14.25%) and [15], [16]
on coffee product distribution (MAPE 13.47%). The relatively low forecasting error obtained here is
attributed to the high data granularity (weekly observations) and the integration of DRP scheduling,
which provides a structured feedback loop for demand stabilization. These findings confirm the as-
sertion of [17], [18] that shorter time intervals and adaptive smoothing parameters enhance fore-
casting responsiveness in volatile environments.

In the context of production and inventory management, this study’s results are comparable
to[19], [20], who used DRP integration in beverage MSMEs, resulting in a 25-28% reduction in stock-
outs, while this research achieved a projected improvement of 30% in cost efficiency. Wahyuni et al.
(2023) applied the same DRP approach in frozen-food MSMEs, finding that synchronized inventory
releases reduced lead time by 15%. The Rengginang case reinforces these conclusions, showing that
Lot-for-Lot scheduling with a one-week lead time and 168-unit safety stock effectively minimized
holding costs while maintaining product availability.

Moreover, the integration of forecasting and DRP modeling in this study expands upon the
hybrid frameworks discussed by [21], [22], [23], where combining demand forecasting with inven-
tory logic tables improved production planning accuracy by 20-25%. The present study extends this
by coupling DRP with route optimization (Saving Matrix), achieving dual improvements in both sup-
ply accuracy and distribution efficiency—a novelty not yet widely explored in traditional food sec-
tors. [24], [25] observed similar synergies when combining forecasting with vehicle routing problem
(VRP) models in the bread industry, noting a 12% cost reduction. The current findings exceeded that
margin, achieving approximately 18-20% in route-based logistics cost reduction when integrated
with DRP outputs.

The error stability across 52 observation periods indicates that Exponential Smoothing effec-
tively accommodates short-term volatility without substantial lag, contrasting with [26], [27] who
found Moving Average methods less adaptive under seasonal demand shocks. The robustness of the
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Rengginang model further aligns with [28], [29], [30], who noted that a values near 0.9 allow models
to better follow sharp fluctuations while avoiding overfitting. Additionally, when compared to neu-
ral-based forecasting models such as those by [31], [32] (ANN on palm sugar sales, MAPE 8.4%), this
study’s result remains competitive but more practical for MSME applications due to lower computa-
tional complexity.

Another key observation concerns cost optimization outcomes. While [33], [34], [35] applied
Min-Max inventory systems yielding cost reductions of 23%, the DRP-Saving Matrix integration pro-
posed here achieved an estimated 30% improvement. This indicates superior synchronization be-
tween forecasted requirements and distribution scheduling. The model’s design adheres to the effi-
ciency principles outlined by [36] [37], [38], emphasizing adaptive logistics policies in MSME supply
chains. Furthermore, empirical validation against actual operations demonstrates that forecasting-
driven inventory control outperforms intuition-based decision-making common among traditional
producers.

When positioned within broader literature, this study also complements findings by [39],
[40]on traditional snack industries, where manual inventory practices led to overproduction up to
18%. The proposed data-driven approach successfully mitigates similar inefficiencies by maintaining
projected on-hand inventory at optimal safety levels (126-168 units). Additionally, [41], [42] high-
lighted the role of DRP in improving service levels by 17% through better synchronization between
procurement and distribution, a result mirrored in this research with comparable fulfillment-rate
improvements.

CONCLUSION
This research successfully developed and validated a hybrid Exponential Smoothing—-DRP-

Saving Matrix framework to optimize distribution performance for traditional Rengginang MSMEs in

Bandung. The integration of accurate short-term forecasting (MAPE = 10.33%) with systematic DRP

scheduling and route optimization produced tangible operational benefits, including approximately

30 % total logistics-cost reduction, balanced stock levels, and improved service reliability. The lot-

for-lot policy with a one-week lead time and 168-unit safety stock proved effective in aligning pro-

duction with fluctuating demand while minimizing holding costs. Compared with prior MSME stud-
ies, this framework demonstrates superior predictive precision, cost stability, and adaptability under
seasonal demand variation. Academically, the study contributes to the limited body of research that
integrates forecasting, inventory planning, and routing optimization within small-scale food indus-
tries. Practically, it offers a replicable, data-driven decision model enabling traditional food enter-
prises to enhance sustainability and competitiveness through synchronized production and logistics
management.
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