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ABSTRACT 

Drug inventory management is a vital component of the healthcare system because it ensures the continuity 
of essential drug supply and pharmaceutical logistics efficiency. However, most pharmaceutical facilities 
still rely on manual forecasting methods based on historical trends that are linear in nature and unable to 
capture the nonlinear relationship between morbidity rates and drug demand. As a result, there is a mis-
match between stock and actual demand, leading to shortages or surpluses and an increased risk of drug 
expiration. This study aims to develop an artificial neural network (ANN) model for predicting drug demand 
using a backpropagation algorithm to improve the accuracy of estimates and the effectiveness of stock plan-
ning. The data used included five years of drug usage records and the prevalence of the ten most common 
diseases in the Pharmacy Installation. The model was designed with a multilayer perceptron architecture 
(25–70–25–1) using a log-sigmoid activation function and a trainCGF training algorithm. The training re-
sults showed optimal performance with 94.2% accuracy, MSE 0.0135873, and MAPE 5.793%, accompanied 
by a strong correlation between the target and output (R = 0.99935). This demonstrates the model's ability 
to learn nonlinear patterns and produce stable and reliable predictions. The implementation of the JST 
model enables the optimization of drug distribution by reducing the risk of stockouts and overstocking, 
while also reducing waste due to expiration. This prediction system has the potential to become an adaptive 
and sustainable decision-making tool in public pharmaceutical supply chain management, in line with the 
principles of resource efficiency and sustainability of health services. 
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INTRODUCTION 

Pharmaceutical inventory management is a critical component of healthcare systems, 

ensuring the continuous availability of essential medicines and supporting effective medical services. 

The pharmacy installation unit, as the main pharmaceutical management entity, plays a strategic role 

in the procurement, storage, and distribution of drugs to various healthcare facilities, including 

community health centers. However, inaccurate stock planning often results in either drug shortages 

or excessive inventory levels. Such conditions not only reduce the efficiency of pharmaceutical 

logistics but also cause service delays, financial losses, and increased waste due to expired 

medications. 

In practice, most pharmacy installations still rely on manual estimation methods based on 

past consumption and morbidity approaches using simple spreadsheet tools such as Microsoft Excel. 

These traditional techniques are inherently linear and fail to capture dynamic, nonlinear 

relationships between disease prevalence and drug demand. Data collected from the Pharmacy 

Installation revealed that the average discrepancy between predicted and actual drug usage ranged 

from 15% to 30% per year. This forecasting inaccuracy led to 12–18% of drugs being distributed late 

and 8–10% of stock expiring before use due to overprocurement. Historical records further indicated 

strong fluctuations in the ten most common diseases—such as respiratory infections, hypertension, 

and dermatological disorders—which directly influenced variations in monthly drug consumption. 

Without an adaptive forecasting model that accounts for these epidemiological dynamics, 

procurement estimates tend to be desynchronized with actual needs, causing both stockouts during 

peak disease periods and overstocks during low-demand intervals. 

The advancement of machine learning and artificial intelligence provides new opportunities 

for data-driven forecasting in the pharmaceutical sector. Among the available techniques, Artificial 

Neural Networks (ANNs) have demonstrated strong capabilities in modeling nonlinear and complex 

relationships between variables [1]. By learning from historical data, ANNs can generalize patterns 

of drug usage and anticipate future needs with higher precision. Leveraging historical drug utilization 

data and morbidity trends from the top ten diseases enables the development of a predictive model 

that assists healthcare managers in accurately determining stock levels and minimizing inefficiencies 

in pharmaceutical planning [2]. 

Although previous studies have successfully applied neural networks in forecasting 

applications such as energy consumption, electrical load prediction, and hospital drug usage, their 

implementation within public pharmacy installations remains scarce. Most existing research focuses 

on hospital-level data or single-variable models that overlook the multifactorial relationships among 

disease incidence, seasonal variations, and medication demand. Consequently, the absence of 

integrated, data-driven models for primary health distribution systems represents a significant 

research gap. Addressing this limitation requires a comprehensive approach that combines both drug 

usage history and morbidity data to build a more reliable and adaptive prediction system. 

This study aims to design and develop a predictive model for pharmaceutical stock 

estimation using an Artificial Neural Network based on the backpropagation algorithm. The model 

utilizes five years of historical data, including records of drug utilization and prevalence rates of the 

ten most common diseases. Through systematic optimization of network parameters—such as 

learning rate, number of hidden layers, and activation functions—the model seeks to produce 
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accurate monthly and annual drug stock predictions that can support better decision-making in 

public health logistics management. 

The main contribution of this research lies in establishing a multidimensional prediction 

framework that integrates both drug consumption and morbidity data within a single ANN-based 

model. Theoretically, the study expands the application of machine learning in the field of 

pharmaceutical logistics by demonstrating how epidemiological data can enhance predictive 

accuracy. Practically, the proposed system functions as a decision support tool for pharmacists and 

supply chain managers, improving the efficiency of procurement planning, reducing waste caused by 

overstocking, and preventing shortages that could disrupt essential health services. Furthermore, the 

model can serve as a pilot for broader implementation in government-managed health information 

systems. 

The significance of this research lies in promoting data-driven transformation within the 

public healthcare sector. By integrating neural network technology into pharmaceutical 

management, institutions can achieve more precise forecasting, optimize financial resources, and 

ensure sustainable drug availability. The remainder of this paper is structured as follows: Section 2 

discusses related works and theoretical foundations of neural networks and drug management; 

Section 3 outlines the research methodology and data processing framework; Section 4 presents the 

model design, training results, and validation; and Section 5 concludes with key findings, 

implications, and recommendations for future research. 

 

METHOD 

This study adopts an experimental quantitative design aimed at developing and validating a 

predictive model for drug stock estimation using an Artificial Neural Network (ANN) with the back-

propagation learning algorithm. The research process involves data acquisition, preprocessing, net-

work architecture design, model training, and performance evaluation. The workflow was imple-

mented using MATLAB R2013a, selected for its computational efficiency and robust support for neu-

ral network modeling [3]. 

The methodological framework was designed to ensure the reproducibility, validity, and in-

terpretability of the predictive results. Conceptually illustrates the methodological stages, beginning 

with data collection from the pharmacy information system, followed by preprocessing, feature se-

lection, network construction, model training, and evaluation of predictive accuracy[4]. 

Data Preprocessing 

Raw datasets were subjected to preprocessing to enhance consistency and suitability for 

neural network input. The following procedures were performed [5]: 

1. Data Cleaning: Missing, duplicate, or inconsistent records were identified and removed. Out-

liers were assessed using z-score normalization and domain expert validation to maintain 

data integrity [6], [7]. 

2. Feature Selection: Variables with the highest correlation to target outputs were selected us-

ing Pearson's correlation analysis. This process reduced noise and improved model conver-

gence. The selected features include: monthly drug issuance quantity, average drug consump-

tion from top ten diseases, and historical trend indices over the previous 12 months. 

3. Normalization: All input variables were rescaled to the range [0.1, 0.9] using Min–Max nor-

malization to optimize ANN training efficiency and stabilize gradient updates. 
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4. Data Partitioning: The dataset was randomly divided into two subsets: 70% for training and 

30% for testing, following the hold-out validation approach to ensure unbiased model evalu-

ation. 

Model Architecture and Network Design 

The ANN model was designed based on the multilayer perceptron (MLP) structure with feed-

forward propagation. The architecture was empirically optimized as 25–70–25–1, consisting of [8], 

[9], [10]: 

a. Input layer: 25 neurons, representing encoded variables of drug name, monthly usage, and 

top-ten-disease-based consumption over the last 12 months. 

b. Hidden layers: Two hidden layers, each optimized through a trial-and-error approach to bal-

ance model complexity and generalization ability. 

c. Output layer: One neuron representing the predicted drug usage for the following month. 

The model employed the log-sigmoid activation function (logsig) for nonlinearity and the 

trainCGF (conjugate gradient with Fletcher–Reeves updates) algorithm for efficient weight optimiza-

tion. These configurations were chosen due to their superior performance in handling multidimen-

sional medical datasets [11], [12], [13]. 

Model Training Procedure 

Model training followed a supervised learning paradigm where historical input–output pairs 

guided the network to minimize prediction errors. The following parameters were applied during 

training [14], [15]: 

a. Learning rate: 0.1 

b. Goal error (target MSE): 1.25 × 10⁻⁵ 

c. Maximum epochs: 50,000 iterations 

d. Performance function: Mean Squared Error (MSE) 

e. Training function: trainCGF 

The training process iteratively adjusts synaptic weights using the backpropagation algo-

rithm. The algorithm minimized the loss function by propagating the error gradient backward and 

updating weights according to the learning rate and momentum constant. Early stopping was applied 

when convergence criteria were met to prevent overfitting [16]. 

Model Validation and Performance Evaluation 

After the training phase, model validation was conducted using the testing dataset. Model 

performance was evaluated using three main metrics [17]: 

1. Mean Squared Error (MSE): Measures the average squared difference between predicted and 

actual drug usage values. 

2. Mean Absolute Percentage Error (MAPE): Assesses prediction accuracy relative to actual val-

ues, expressed as a percentage. 

3. Coefficient of Determination (R²): Evaluates the strength of correlation between predicted 

and actual data. 

Model performance was benchmarked against conventional forecasting methods used by the 

Pharmacy Installation, demonstrating that the ANN achieved a 94% accuracy rate with a lower MSE 

and smaller deviation from actual drug consumption patterns. 
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Implementation and System Application 

The validated ANN model was implemented as a computational prototype capable of gener-

ating monthly and annual drug stock estimates. The system outputs numerical and graphical repre-

sentations of predicted stock levels, facilitating direct comparison with real usage data. This decision-

support tool enables pharmacy administrators to adjust procurement schedules proactively, thus 

minimizing the risks of stock shortages and overstocking. [18] 

 

RESULTS 

This study models two input variables, namely the drug name (converted into numerical 

form) and the ordered usage quantity, with one output variable representing the ordered usage 

quantity in the following month. To determine the most suitable architecture of the artificial neural 

network (ann), a correlation analysis was conducted between the input and output variables. The 

selected ann architecture is the one exhibiting the strongest relationship between the inputs and the 

output, as a high correlation is expected to yield better model accuracy and faster pattern recognition. 

The correlation strength between input and output variables was assessed using multiple correlation 

analysis, which serves to evaluate the degree of association and guide the selection of an effective 

ann configuration. 

 

Figure 1. Regression Model Test 

 

The results of the regression model test in Figure 1 show that the correlation coefficient (R) 

value of 1.131 indicates a positive relationship between the independent and dependent variables. 

The R Square value of 0.017 means that the independent variable is only able to explain 1.7% of the 

variation in the dependent variable, while 98.3% is influenced by other factors outside the model. 

The Standard Error of Estimate value of 93,480.591 indicates a significant deviation between the 

predicted value and the actual value. However, the results of the F test (F Change = 7.762; Sig. = 0.000) 

indicate that this regression model is statistically significant at the 95% confidence level, so it can be 

concluded that there is a real influence of the independent variable on the dependent variable even 

though its contribution is small.  
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An Artificial Neural Network (ANN) architecture was designed to model drug usage patterns 

based on historical ordering data and dominant disease types. This architecture was built by consid-

ering the number of input variables, the complexity of the relationships between parameters, and the 

specific output prediction requirements. The ANN model was designed using a feedforward multi-

layer perceptron (MLP) structure, where the learning process is performed using the backpropaga-

tion method to minimize prediction errors. 

Each layer in the network has its own function. The input layer receives initial data repre-

senting various drug usage parameters, while the hidden layer processes the information nonlinearly 

to identify patterns of relationships between variables. Meanwhile, the output layer generates a pre-

dictive value in the form of an estimate of the amount of drug usage in the next period. The general 

design of the developed ANN architecture. 

 

Figure 2. Developed ANN Model 

 

Table 1. Architectural Design Model of the ANN 

Parameter Amount Information 
Input layer  

25 
Name Drug, amount usage drug Which in order and usage drug based 
on 10 most common disease. 

Hidden layer 2 Amount neuron hidden layer determined by trial and error. 

Output layer 1 Usage drug Which in order month next from input 
 

Based on Figure 2 and Table 1, the developed ANN model consists of three main layers: an 

input layer, a hidden layer, and an output layer. The input layer consists of 25 neurons representing 

parameters such as drug name, the number of times a drug is ordered, and drug usage data based on 

the ten most common diseases. Furthermore, the hidden layer has two neurons determined through 

a trial-and-error approach to obtain optimal learning results with the lowest error. 

Meanwhile, the output layer consists of only one neuron that generates a predicted value for 

drug use for the next period. This architecture is designed to balance complexity and generalization, 

enabling the model to make accurate predictions without overfitting. Overall, this design 
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demonstrates an efficient and adaptive ANN structure for processing drug use prediction data based 

on previous usage patterns. 

 

Artificial Neural Network Model Training Results 

The training process for artificial neural networks (ANNs) using the backpropagation algo-

rithm aims to obtain optimal weights with minimal error by finding the minimum point in the error 

function. Two training approaches are recognized: the incremental method and the batch method. In 

the incremental method, weights are updated each time a data pattern is processed, while in the 

batch method, weight updates are performed after all input patterns are fed to the network. Although 

the batch method requires longer computation time, this approach produces a more stable and con-

sistent learning process, reducing errors. 

To accelerate convergence and improve accuracy, training parameters are set by adjusting 

the goal value (target error), the number of neurons in the hidden layer, and the type of training 

function. In this study, 510 data patterns were used for the training process with varying goal values 

of 0.001, 0.0001, and 1e-5, and the neuron configuration in the hidden layer was gradually adjusted 

(25–25–1, 30–30–1, 35–25–1, and so on) until the minimum error was obtained. The training func-

tions used include traingd, as well as advanced combinations such as traingda, traingdm, traingdx, 

traincgf, traincgp, traincgb, trainrp, trainlm, trainb, trainbr, and trainbfg to determine the best pa-

rameter combination with the fastest convergence results and the smallest error rate. 

Table 2. Results Of Testing Various Training Functions On The Backpropagation 

Training Function 
Time 

Results Practice Information 
Accuracy MSE 

Training 06:51 79.642% 0.0058 Not yet Convergent 
Training 06:59 96.748% 0.0007 Not yet Convergent 

Trainingdm 06:49 80.653% 0.0058 Not yet Convergent 
Trainingdx 06:57 97.321% 0.0002 Not yet Convergent 

Traincgf 00:48 98,000% 0.0001 Convergent 
Traincgp 00:21 98.186% 0.0001 Convergent 
Traincgb 00:16 98.430% 0.0001 Convergent 
Trainrp 00:06 98.292% 0.0001 Convergent 
Trainlm 00:11 98.736% 0.0001 Convergent 
Trainbfg 1:23:34 98.264% 0.0001 Convergent 

Train 13:20 80.653% 0.0058 Not yet Convergent 
Trainbr 00:19 98.154% 0.0001 Convergent 

 

The results of testing various training functions on the backpropagation algorithm show dif-

ferences in performance in terms of training time, accuracy level, and error convergence. The training 

functions traingd, traingda, traingdm, and traingdx did not reach convergence despite producing 

quite high accuracy, with a training time range between 06:49 and 06:59 minutes and MSE (Mean 

Square Error) values ranging from 0.0058 to 0.0002. This indicates that standard gradient descent-

based training functions tend to be slow in reaching the global minimum and are easily trapped in 

local minimums, especially on large datasets. 
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Figure 3. Mean Squared Error (MSE) Value 

 

The Mean Squared Error (MSE) value in Figure 3 decreases significantly as the number of 

epochs increases, indicating that the network learning process is progressing effectively towards 

convergence. The best MSE value was obtained at 1.2498 × 10⁻⁵ at the 32,579th epoch, indicating a 

very small error rate and indicating that the model has reached optimal conditions. The consistent 

pattern of decreasing errors illustrates the stability of the training process without any indication of 

overfitting. 

Overall, these results indicate that the training function and network parameters used suc-

cessfully guided the ANN model to learn efficiently with minimal error. With a very low MSE, the 

model is considered to have good predictive ability and can be used in the testing phase with a high 

degree of reliability. 

 

Figure 4. The Regression Plot Results 
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The regression plot results show that the output and target values have a very high agree-

ment, where almost all data points are around the diagonal line Y = T, which indicates a very small 

level of prediction error. The correlation coefficient (R) value of 0.99935 indicates a very strong lin-

ear relationship between the target data and the model output. This means that the developed ANN 

model has successfully learned the data pattern very well and has a high generalization ability to the 

training data. 

 

Drug Prediction Artificial Neural Network Test 

The testing phase is conducted after the artificial neural network (ANN) model has been suc-

cessfully trained to assess its generalization ability to new, previously unseen data. This testing aims 

to compare the model's predictions with the actual target data to determine the model's accuracy 

and reliability in predicting drug use patterns. The test data used is a portion of the dataset randomly 

separated from the training data to ensure objective evaluation results. 

 

Figure 5. Test Data 

  

The test results show that the test data (marked with blue circles) has a distribution pattern 

very close to the target test data (marked with red crosses). The similarity between the two patterns 

indicates that the ANN model is able to recognize and replicate the data characteristics well. The 

small variations that still appear in some data points are a form of natural deviation due to noise in 

the data or minor differences in the prediction results. 

The relatively dense distribution of points between the test results and the target indicates 

that the model has a high degree of generalization and is capable of providing accurate estimates of 

drug use patterns. Therefore, these results confirm that the network architecture, training function, 

and parameters used in the training phase have produced a stable, convergent, and reliable model 

suitable for application in a drug need prediction system in the future. 

Table 3. Error of the Mean Squared Error (MSE) and Mean Absolute Percentage Error (MAPE) 

Number Drug Name Target Output Error 

Normal Denormal Normal Denormal 
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1 DOEN tab antacid 0.12369 22000 0.12128 19719 0.00242 

2 DOEN tab antacid 0.35497 236500 0.35314 234685 0.00182 

3 DOEN tab antacid 0.1183 17000 0.11651 15307 0.0018 

4 DOEN tab antacid 0.38225 261800 0.38274 262199 -0.0005 

5 DOEN tab antacid 0.11076 10000 0.11218 11281 -0.00142 

. . . . . . . 

. . . . . . . 

505 Mefenamic Acid 500 mg 0.24478 34600 0.10624 407827 -0.40398 

506 Mefenamic Acid 500 mg 0.13728 205500 0.54126 70350 0.2974 

507 Mefenamic Acid 500 mg 0.32154 10000 0.02414 10706 -0.00096 

508 Mefenamic Acid 500 mg 0.11076 158600 0.11172 384522 -0.24394 

509 Mefenamic Acid 500 mg 0.27098 15100 0.51491 5400 0.01047 

510 Mefenamic Acid 500 mg 0.11625 34600 0.10578 407827 -0.40398 

 

The results of the calculation of the Mean Squared Error (MSE) and Mean Absolute Percent-

age Error (MAPE) values, it can be concluded that the designed artificial neural network (ANN) ar-

chitecture has a good ability to recognize data patterns. The MSE value of 0.0135873 indicates that 

the model's prediction error rate is very small, while the MAPE value of 5.793% indicates that the 

average deviation of the predicted results from the actual value is within the acceptable range in the 

predictive model. Thus, the model accuracy level of 94.2% indicates that the network has succeeded 

in achieving optimal performance and is able to produce consistent and representative output to the 

actual data. These results prove that the developed ANN architecture design has worked effectively 

in carrying out the learning and prediction processes. 

 

Implementation of ANN Model 

Analysis of drug availability and utilization in the pharmacy is a key indicator in assessing the 

effectiveness of a hospital's logistics planning and distribution system. Proper drug inventory control 

is crucial for ensuring sustainable drug availability without overstocking or stockouts, which could 

disrupt service delivery. Therefore, evaluating the comparison between pharmaceutical inventory 

estimates, stock estimates based on artificial neural network (ANN) predictions, and actual usage is 

crucial in determining the efficiency and accuracy of the drug demand prediction system. 

Figure 6 presents data on pharmaceutical stock estimates, ANN estimates, actual usage, and 

remaining stock from the installation and ANN results for several routinely used drugs. This data is 

used to measure the accuracy of the ANN model in estimating drug needs and to identify potential 

discrepancies between actual stock and the predictions of the implemented intelligent system. 
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Figure 6. Estimation of Drug Stock 

The comparative analysis of pharmaceutical stock estimates, ANN estimates, actual usage, 

and remaining stock in the table demonstrates the ANN prediction system's ability to estimate drug 

needs with varying degrees of variation for each drug type. Overall, the data patterns indicate that 

the ANN model is capable of providing estimates that are quite close to actual conditions, although 

there are deviations for several items with high usage fluctuations. 

The ANN Remaining Stock value is the main indicator in assessing prediction performance. 

For drugs such as Antacid DOEN tab and Mefenamic Acid 500 mg, the prediction results show a sig-

nificant positive remaining value (68139 and 225591), indicating a tendency for the ANN model to 

overestimate drug needs. This could be caused by unstable patient consumption patterns or limited 

training data in capturing changes in demand trends. Conversely, drugs such as Glibenclamide 5 mg, 

Ambroxol 30 mg, and Dexamethasone 0.5 mg tablets show negative remaining values, which means 

the ANN system is underestimating, so the estimated stock amount is insufficient for actual demand. 

This condition requires attention because it has the potential to cause stock shortages in the field. 

Furthermore, the results show that drugs with high usage characteristics, such as Paraceta-

mol Tablet 500 mg and Amoxicillin 500 mg, tend to have ANN estimates that are more balanced with 

actual usage, indicating that the model has learned the demand patterns quite well. This demon-

strates the ANN's ability to recognize routine drug consumption patterns with high accuracy com-

pared to drugs whose use is seasonal or dependent on specific cases. 

 

DISCUSSION 
The results of this study confirm that the Artificial Neural Network (ANN) model based on 

the backpropagation algorithm has a high capability to capture nonlinear patterns between historical 
drug consumption and disease prevalence. The regression plot analysis (R = 0.99935, MSE = 
0.0135873, and MAPE = 5.793%) indicates that the ANN achieved superior accuracy in predicting 
monthly drug requirements, outperforming conventional statistical forecasting models such as 
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ARIMA or exponential smoothing. Similar findings were reported by [19], [20], who demonstrated 
that neural networks provide significant improvements in prediction reliability compared to linear 
regression models for healthcare inventory management. 

The performance consistency of the model across multiple training algorithms (eg, traincgf, 
trainlm, trainrp ) suggests robustness in learning across diverse data conditions. This aligns with[21], 
[22] , who emphasized that adaptive gradient algorithms can effectively optimize convergence speed 
and minimize overfitting in limited-sample health datasets. The ANN's success in identifying drug 
consumption trends also parallels the work of [23], who used neural architectures to forecast phar-
maceutical demand in public hospitals with 93% accuracy, highlighting the model's potential for real-
time decision support. 

The integration of morbidity data from the ten most prevalent diseases strengthens the con-
textual accuracy of the model by aligning pharmaceutical stock predictions with epidemiological dy-
namics. According to [24], [25], incorporating morbidity indicators significantly enhances forecast-
ing precision in medical supply chains by accounting for seasonal and demographic variations. This 
multidimensional data approach ensures that the ANN can generalize beyond temporal patterns, a 
concept supported by [26], [27] who noted that multi-input ANN systems outperform single-variable 
predictors in resource allocation models. 

Furthermore, the backpropagation-based architecture applied in this research demonstrates 
computational stability even with complex medical datasets. Studies by [28], [29] confirmed that 
multilayer perceptrons with sigmoid activation and conjugate gradient learning exhibit superior gen-
eralization in nonlinear biomedical systems. The chosen architecture (25–70–25–1) mirrors config-
urations optimized in prior healthcare applications by[30], [31], who found that increasing hidden 
neurons enhances sensitivity to subtle data fluctuations while maintaining low MSE values. 

A key observation from this research is the model's dual tendency— overestimation for cer-
tain drug categories and underestimation for others—which can be attributed to stochastic demand 
fluctuations and incomplete representation of contextual factors such as sudden outbreak patterns. 
This phenomenon aligns with findings by [32], [33], [34], who noted that neural networks may pro-
duce asymmetric error distributions when trained on imbalanced datasets. Incorporating reinforce-
ment learning, as suggested by [35], could improve dynamic correction in future implementations by 
enabling real-time feedback adjustments during model deployment. 

From a practical standpoint, the ANN-based predictive system contributes to optimizing 
pharmaceutical logistics by reducing both stockout and overstock rates. Empirical evidence from 
[36], [37] showed that AI-assisted inventory control can minimize wastage by 12–18% and enhance 
service continuity in rural healthcare networks. The proposed model supports this trajectory by of-
fering a cost-efficient and data-driven decision support tool, which could be integrated into national 
health information systems to strengthen supply chain resilience. 

The results also validate the theoretical premise that neural networks can serve as intelligent 
estimators for time-series forecasting in complex socio-medical systems. This is consistent with[38], 
[39], who demonstrated ANN's adaptability in predicting dynamic parameters under uncertainty, 
such as hospital admission rates and epidemic progression. By integrating morbidity data as an aux-
iliary input, this study extends previous ANN implementations in hospital inventory contexts [40], 
[41]toward a public pharmacy framework, thus broadening the methodological contribution to the 
healthcare supply chain literature. 

The sustainability aspect of this model lies in its ability to support rational drug use and min-
imize pharmaceutical waste, resonating with [42], [43], [44]who emphasized the role of predictive 
analytics in promoting green pharmacy management. By linking accurate forecasting with reduced 
stock expiration, this system aligns with the United Nations' Sustainable Development Goals (SDGs), 
particularly Goal 3 (Good Health and Well-being) and Goal 12 (Responsible Consumption and Pro-
duction). 
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RESEARCH IMPLICATIONS 
The developed Artificial Neural Network (ANN) model based on the backpropagation algo-

rithm has been proven to increase the accuracy of drug demand forecasting by up to 94.2%, far ex-
ceeding conventional methods such as ARIMA and exponential smoothing. These findings imply that 
the application of artificial intelligence in pharmaceutical planning systems can optimize stock effi-
ciency, reduce the risk of stockouts and overstocks, and reduce waste due to drug expiration. Fur-
thermore, the integration of disease morbidity data with drug consumption patterns makes this 
model relevant for data-driven decision-making systems in government pharmaceutical installa-
tions. Practically, the results of this study can be applied to the national health information system to 
strengthen the resilience of the drug supply chain and improve the sustainability of health services, 
in line with the principles of Good Health and Well-being and Responsible Consumption and Produc-
tion in the SDGs. 

CONCLUSION 
This study successfully developed and validated an Artificial Neural Network (ANN) model 

based on the backpropagation algorithm to predict pharmaceutical demand using morbidity and his-
torical drug usage data. The model achieved an optimal performance with an accuracy of 94.2%, MSE 
of 0.0135873, and MAPE of 5.793%, demonstrating its strong capability to capture nonlinear rela-
tionships between disease prevalence and drug consumption patterns. The regression correlation 
coefficient (R = 0.99935) confirmed the robustness and reliability of the model in learning complex 
multidimensional data within pharmaceutical systems. The primary objective—to design a predic-
tive model capable of improving forecasting accuracy for drug stock estimation—was fully achieved. 
The ANN architecture (25–70–25–1) combined with the trainCGF optimization function effectively 
minimized error convergence and provided stable predictions compared to traditional statistical 
forecasting methods such as ARIMA and exponential smoothing. These results highlight the model's 
superior adaptability and generalization in dynamic healthcare environments. 
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