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ABSTRACT 

Purpose –The research integrates demand forecasting using the Exponential Smoothing (ES) method to 
develop an adaptive and data-driven framework for cost optimization in volatile demand conditions. Meth-
odology – A quantitative–descriptive and analytical approach was adopted by combining forecasting accu-
racy analysis with cost comparison modeling. Two forecasting models—Moving Average (MA) and Expo-
nential Smoothing (ES)—were tested using 2021–2023 demand data. The most accurate model (lowest 
MAPE) was used to simulate inventory performance through the Min–Max and Blanket Order systems. Sen-
sitivity analysis with ±10% demand variation was conducted to evaluate model robustness, while correla-
tion testing validated forecast accuracy against actual demand. Findings – The Exponential Smoothing 
model achieved superior predictive accuracy (MAPE = 0.883%) compared with the Moving Average model 
(MAPE = 1.338%). The Min–Max Stock system produced lower total costs—IDR 116,269,920 (2021), IDR 
123,260,400 (2022), and IDR 128,466,720 (2023)—compared with the Blanket Order system, which rec-
orded higher and more volatile costs across the same period. The hybrid Min–Max–Forecasting approach 
demonstrated higher stability under demand fluctuations and improved procurement efficiency, achieving 
an estimated 30% cost reduction. Practical implications – This study offers SMEs an evidence-based strat-
egy for integrating forecasting accuracy into inventory control, supporting cost reduction and production 
continuity in resource-constrained environments. The model can be adopted as a reference for developing 
adaptive inventory policies within the Indonesian SME food sector. Originality– The originality of this study 
lies in its hybrid integration of Exponential Smoothing forecasting within comparative Min–Max and Blan-
ket Order frameworks, offering empirical validation for forecasting-driven inventory decisions at the SME 
scale. The approach provides both theoretical advancement and managerial relevance by aligning predic-
tive accuracy with inventory cost optimization in volatile market contexts. 
 
Keywords: Inventory control, Min–Max method, Blanket Order, Exponential Smoothing, SMEs, Forecasting 
accuracy, Cost optimization. 
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INTRODUCTION 

Raw material inventory control plays a pivotal role in ensuring the operational stability and 

cost efficiency of manufacturing industries, particularly in the food sector, where production conti-

nuity depends heavily on the consistent availability of ingredients. For small and medium-sized en-

terprises (SMEs), inaccurate inventory management can directly affect production schedules, prod-

uct quality, and overall profitability. According to [1], weak inventory control systems often lead to 

excessive resource consumption due to overstock or stockout conditions, which in turn hinder pro-

duction targets and increase total inventory costs [2]. 

This phenomenon is evident in SMEs, a snack manufacturer, the company experienced sig-

nificant fluctuations in monthly demand, with an average chili requirement of approximately 

700 kg per month, ranging between 682.20 kg and 732.54 kg. These fluctuations generated two 

major issues: (1) stockout events during high-demand periods, disrupting production flow and cre-

ating backorders, and (2) overstock accumulation during periods of low sales, resulting in addi-

tional storage costs of around IDR 250,000 per month. Furthermore, the fixed ordering cost of 

IDR 200,000 per cycle increased the total expenditure, as orders were placed repeatedly without 

standardized planning or demand forecasting. 

Such evidence indicates that the existing inventory control system remains reactive and lacks 

a structured forecasting approach to determine optimal stock levels. As highlighted by [3], [4], effec-

tive inventory control depends on the organization’s ability to forecast demand accurately and es-

tablish appropriate reorder points. In the case of Maisatun SMEs, inconsistent demand for fresh chili 

has made it difficult to define safety stock, minimum stock, and reorder points effectively. Conse-

quently, procurement decisions are often made without considering historical demand patterns, 

leading to higher overall inventory costs and inefficient cash flow [5]. 

Previous studies have extensively explored inventory control methods such as the Economic 

Order Quantity (EOQ), Material Requirement Planning (MRP), and Continuous Review System 

models. However, these methods were primarily designed for large-scale industries with relatively 

stable demand characteristics. In contrast, SMEs that face seasonal and volatile market demand re-

quire more adaptive and flexible inventory control strategies. The Min-Max Stock method focuses 

on maintaining stock within a predetermined safety range to prevent shortages and surpluses [6], 

[7], while the Blanket Order method facilitates bulk purchasing agreements at fixed prices within a 

defined period [8]. Despite their practical advantages, there remains a research gap concerning the 

comparative cost-effectiveness of these two methods when applied to SMEs with fluctuating demand 

and constrained resources. Moreover, most prior studies have not incorporated forecasting accu-

racy as a determinant factor in choosing the most cost-efficient control model. 

Therefore, this study aims to analyze and compare the effectiveness of the Min-Max Stock 

and Blanket Order methods in minimizing total raw-material inventory costs at SMEs Keripik 

Cabai Maisatun. By integrating demand forecasting using the Exponential Smoothing method—

which demonstrated the smallest error with a MAPE of 0.883%, compared with the Moving Average 

method (1.338%)—this research proposes a data-driven and cost-oriented inventory control strat-

egy. The findings are expected to contribute to the advancement of empirical studies on SME-scale 

inventory management, provide validation for hybrid forecasting-control approaches, and offer man-

agerial implications for achieving sustainable cost optimization and production reliability within vol-

atile market environments. 
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METHOD 

This research adopts a quantitative–descriptive and analytical framework designed to 

evaluate the efficiency of inventory control strategies in minimizing total costs within small and 

medium-sized enterprises (SMEs). The study integrates a forecasting–inventory modeling hybrid 

design, combining demand prediction with two distinct control systems: the Min–Max Stock Method 

and the Blanket Order Method [9], [10]. This dual approach allows comprehensive analysis of 

inventory cost behavior under fluctuating demand patterns. 

The overall framework aims to: 

(1) forecast demand for chili-based raw materials with high accuracy; 

(2) compute total inventory costs using Min–Max and Blanket Order methods; and 

(3) determine the optimal approach based on comparative cost minimization. 

The framework aligns with prior quantitative models proposed by [11], [12], [13]and 

adapted for SMEs’ operational characteristics with constrained resources, fluctuating supplier lead 

times, and limited technological support.  

Data Characteristics and Variables 

This study utilized a combination of primary and secondary data: 

• Primary Data: Direct observations of the inventory flow, interviews with production and 

purchasing personnel, and on-site evaluation of order cycles and stock fluctuation patterns. 

• Secondary Data: Historical quantitative records from January 2021 to December 2023, 

comprising: 

o Monthly chili demand (kg); 

o Purchase quantity and frequency; 

o Unit purchasing price (Rp/kg); 

o Ordering cost and holding cost per cycle; 

o Supplier lead time (days). 

The study focuses on five major variables that influence total inventory costs: demand (D), 

order cost (Cₒ), holding cost (Cₕ), purchasing cost (Cₚ), and safety stock (SS). 

Forecasting Analysis 

Forecasting serves as the initial analytical stage to estimate future demand and form the basis 

for subsequent inventory computations. Two time-series forecasting models were tested [14], 

[15]: 

1. Moving Average (MA, n=3) – assumes equal weighting across historical periods. 

2. Single Exponential Smoothing (ES, α=1) – provides adaptive weighting emphasizing recent 

observations. 

To evaluate the forecasting performance, three standard accuracy metrics were applied: 

• Mean Absolute Deviation (MAD) – measures absolute forecast deviation; 

• Mean Squared Error (MSE) – penalizes large forecast errors; 

• Mean Absolute Percentage Error (MAPE) – assesses relative forecast precision. 

The forecasting model with the smallest MAPE was selected as the optimal predictor of 

monthly chili demand and used as the input for inventory control simulations. 
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Comparative and Sensitivity Analysis 

A comparative cost analysis was performed to determine which model—Min–Max or Blan-

ket Order—provides the lowest total inventory cost (TC₁ vs. TC₂). Additionally, a sensitivity test was 

conducted by simulating ±10% demand variation to assess model robustness under uncertainty. Sta-

tistical validation included correlation analysis between forecasted and actual demand, as well as 

percentage cost reduction benchmarking. This step ensured that selected models maintained relia-

bility and adaptability under real production conditions [16], [17]. 

 

RESULTS 

The monthly demand trend for Chips throughout the year 2023. The dataset represents the 

actual sales quantity observed across twelve months, providing an overview of seasonal demand 

fluctuations and overall market growth dynamics. The analysis aims to identify periods of high and 

low demand to support production planning, inventory control, and supply chain optimization. Con-

sistent demand growth is a critical indicator of stable consumer preference and effective distribution 

strategy within the snack industry. 

 

Figure 1. Plot Data 

 

Based on Figure 1, the demand trend shows a gradual increase throughout the year with mi-

nor fluctuations in the first quarter. Demand rose sharply from February to March, reaching approx-

imately 710 units, followed by a slight stabilization from April to May. From June onward, the trend 

continued upward, indicating sustained market absorption and improved consumer acceptance. The 

highest demand was recorded in December, exceeding 730 units, reflecting strong end-of-year sales 

momentum. These findings suggest that production capacity should be adjusted to anticipate peak 

demand periods, particularly during the final quarter, to maintain market responsiveness and mini-

mize stock shortages. 

Moving Average (MA) 

Figure 2 displays the demand forecasting results using the Moving Average (MA) method. 

This technique estimates future values by averaging a fixed number of preceding data points, thereby 

minimizing short-term fluctuations and emphasizing the underlying demand trend. In this study, a 

three-period moving average (n = 3) was implemented using Microsoft Excel 2019 to analyze the 

monthly demand pattern of Chilli Chips during 2023. The approach aims to evaluate the stability of 
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the demand series and the forecasting precision through performance indicators such as MAPE, MAD, 

and MSE. 

 

Figure 2. Moving Average Forcasting 

 

As shown in Figure 2, the forecasted demand generated by the Moving Average model closely 

follows the actual demand pattern, with minor deviations observed during the early periods. The 

forecast trend line successfully captures the general upward trajectory of demand throughout the 

year. The resulting accuracy metrics demonstrate satisfactory performance, yielding a Mean Abso-

lute Percentage Error (MAPE) of 1.338%, a Mean Absolute Deviation (MAD) of 9.577, and a Mean 

Squared Error (MSE) of 125.203. These results indicate that the Moving Average method provides an 

acceptable level of predictive accuracy for short-term forecasting, making it an effective tool for pro-

duction planning and inventory control in relatively stable demand environments. 

Exponential Smoothing 

Figure 3 presents the forecasting results obtained using the Exponential Smoothing (ES) 

method. This method applies a weighted average to past observations, where more recent data points 

receive higher significance through a smoothing constant (α). The Exponential Smoothing model is 

effective for capturing short-term demand fluctuations while maintaining trend stability. In this anal-

ysis, the forecasting process was conducted with a smoothing constant of α = 1 to evaluate its predic-

tive performance in modeling the monthly demand pattern of Chilli Chips during 2023. 

 

Figure 3. Exponential Smoothing 
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The results shown in Figure 4 demonstrate a close alignment between the actual and fore-

casted demand curves, confirming the model’s capability to accurately represent demand behavior. 

The calculated performance metrics indicate a high forecasting accuracy, with a Mean Absolute Per-

centage Error (MAPE) of 0.883%, a Mean Absolute Deviation (MAD) of 5.896, and a Mean Squared 

Error (MSE) of 78.245. These low error values confirm that the Exponential Smoothing model pro-

vides a reliable fit for short-term demand forecasting. Overall, this method effectively smooths ran-

dom variations and captures the upward trend in demand, making it suitable for operational deci-

sion-making in production and inventory management. 

Min-Max 

Table 1 presents the results of the Min–Max Inventory Control Method applied to raw mate-

rial management over the period 2021–2023. This method determines the minimum and maximum 

stock levels necessary to maintain an optimal balance between inventory availability and cost effi-

ciency. The Min–Max policy establishes two control limits—Minimum Stock (to prevent stockouts) 

and Maximum Stock (to avoid excessive holding)—which are adjusted based on annual consumption, 

lead time, and safety stock requirements. The calculations were performed under the assumption of 

fixed ordering and holding costs per year to facilitate consistent evaluation and decision-making 

across periods. 

Table 1. Results of Min-Max Method for Raw Materials 

Parameter 2021 2022 2023 
Safety Stock 29.215 Kg 48.12 Kg 2.,48 Kg 
Minimum Stock 
Maximum Stock 
ROP 
Order Frequency 
Total Cost 

659.94 Kg 
1.262 Kg 

659.94 Kg 
11 times 

IDR 116,269,920 

701.55 Kg 
1.307 Kg 

701.55 Kg 
12 times 

IDR 123,260,400 

732.54 Kg 
1.422 Kg 

732.54 Kg 
12 times 

IDR 128,466,720 

 

As observed in Table 1, the safety stock and inventory levels experienced moderate fluctua-

tions over the three-year period. The minimum stock increased from 659.94 kg in 2021 to 732.54 kg 

in 2023, while the maximum stock rose proportionally from 1,262 kg to 1,422 kg, indicating gradual 

growth in production requirements. The order frequency stabilized at 12 orders per year in both 

2022 and 2023, suggesting improved procurement efficiency and demand predictability. Corre-

spondingly, the total inventory cost showed a steady increase from IDR 116,269,920 in 2021 to IDR 

128,466,720 in 2023, reflecting higher material utilization and storage needs. Overall, the Min–Max 

approach effectively maintained stock availability while controlling costs, ensuring operational con-

tinuity and minimizing the risk of production delays. 

 

Blanket Order 

Tble 2 presents the results of applying the Blanket Order Method for raw material procure-

ment across the years 2021 to 2023. This method is designed to streamline purchasing activities by 

establishing long-term agreements with suppliers for multiple deliveries over a specified period. 

Such an approach minimizes administrative costs, enhances supplier coordination, and ensures ma-

terial availability with predictable cost structures. The analysis includes several key parameters, 

namely Order Quantity, Errand Cost, Purchasing Cost, Safety Stock, Order Frequency, and Total Cost. 
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All calculations were conducted using standardized cost assumptions to maintain comparability be-

tween years. 

Table 2. Results of the Blanket Order Method for Raw Materials 

Parameter 2021 2022 2023 
Order Quantity 381.189 Kg 387.915 Kg 404.732 Kg 
Errand Cost 
Purchasing Cost 
Safety Stock  
Order Frequency 
Total Cost 

IDR 200,000 
IDR 105,961,800 

IDR 7,303,750 
19 times 

IDR 196,007,181 

IDR 200,000 
IDR 109,777,220 
IDR 12,030,000 

20 times 
IDR 256,537,608 

IDR 200,000 
IDR 119,458,220 

IDR 5,370,000 
21 times 

IDR 186,298,625 

 

The results in Table 2 show that the Blanket Order Method yielded relatively consistent per-

formance throughout the three-year observation period. The order quantity increased steadily from 

381,189 kg in 2021 to 404,732 kg in 2023, reflecting rising production demand. Despite the increase 

in purchase volume, the Total Cost fluctuated—rising sharply to IDR 256,537,608 in 2022, then de-

creasing to IDR 186,298,625 in 2023. This cost reduction indicates improved procurement efficiency 

and better contract management with suppliers. Additionally, the order frequency increased gradu-

ally from 19 to 21 times per year, aligning with higher production activity. Overall, the Blanket Order 

system demonstrates its effectiveness in maintaining supply stability, controlling costs, and support-

ing continuous production through a predictable procurement mechanism.  

 

Comparison of Min-Max and Blanket Order Methods 

Comparative analysis between the Min–Max Method and the Blanket Order Method for raw 

material inventory management during the period 2021–2023. The comparison focuses on the total 

annual cost generated by each approach to determine the most efficient method in terms of cost per-

formance and operational stability. Both models were evaluated using identical assumptions regard-

ing demand volume, ordering frequency, and fixed cost parameters to ensure analytical consistency. 

This comparison aims to identify the strategy that minimizes total inventory-related expenses while 

maintaining adequate material availability. 

 

Figure 4. Comparison of Min-Max and Blanket Order Methods 
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As shown in Figure 4, the Min–Max Method consistently produced lower total costs than the 

Blanket Order Method across all three years of observation. The Min–Max approach recorded total 

costs of IDR 116,269,920 in 2021, IDR 123,260,400 in 2022, and IDR 128,466,720 in 2023, while the 

Blanket Order method yielded significantly higher costs—IDR 196,007,181, IDR 256,537,608, and 

IDR 186,298,625, respectively. The difference suggests that the Min–Max Method provides greater 

cost efficiency, likely due to its ability to maintain optimal inventory levels and reduce holding and 

purchasing costs. Conversely, although the Blanket Order method offers advantages in supplier co-

ordination and material availability, it incurs higher total costs, particularly during periods of fluctu-

ating demand. Therefore, the Min–Max policy can be considered a more economical inventory control 

strategy for achieving cost minimization without compromising operational reliability.  

 

DISCUSSION 
The comparative evaluation between the Min–Max Stock and Blanket Order methods reveals 

a substantial difference in total inventory costs, where the Min–Max model demonstrated superior 
cost efficiency across the three-year observation period. This finding aligns with Bakhtiar and Audina 
(2021), who asserted that adaptive stock-level thresholds minimize both overstock and stockout 
risks, particularly in SMEs with volatile raw material requirements. In this study, the Min–Max ap-
proach maintained optimal stock availability while reducing total costs by approximately 28–35% 
compared with the Blanket Order strategy. The forecasting stage employed both the Moving Average 
(MA) and Exponential Smoothing (ES) methods to identify the most accurate predictive model, where 
the ES method achieved a MAPE of 0.883%, indicating high predictive precision. This result is con-
sistent with [18], [19], [20], who found that exponential models outperform simple averages in cap-
turing short-term demand volatility. Similarly, [21], [22]confirmed that smoothing-based models are 
effective for SMEs that lack extensive data histories yet face rapid market fluctuations. Forecasting 
accuracy in this study directly improved procurement scheduling, aligning with[23], who empha-
sized that minimizing forecasting errors proportionally reduces inventory carrying costs. 

The Min–Max method proved to be the most stable system under uncertain demand condi-
tions. Compared to the Blanket Order system, the Min–Max approach reduced total inventory costs 
by maintaining adaptive safety stock and reorder points. These findings are corroborated by [24], 
[25], who highlighted that Min–Max policies enhance cost control and reduce lead time dependency 
in SMEs with constrained warehouse capacity. Moreover, [26], [27], [28] demonstrated that integrat-
ing Min–Max with demand prediction models can improve supplier coordination efficiency by up to 
25%. Although the Blanket Order method initially streamlined purchasing procedures, its total cost 
fluctuated sharply due to dependency on long-term supplier contracts. As [29], [30], [31] noted, 
fixed-price agreements may lead to inefficiency when market demand changes rapidly. The cost in-
crease observed in 2022 indicates limited adaptability under volatile demand, consistent with [32], 
who observed similar patterns in agroindustry procurement. Nonetheless, the Blanket Order re-
mains beneficial for ensuring supply stability, as indicated by[25], who argued that supplier partner-
ships enhance material availability and reduce shortage frequency despite higher overall costs. 

The sensitivity test conducted with ±10% demand variation confirmed that the Min–Max 
model maintained lower total costs under both increased and decreased demand conditions. This 
adaptability supports [20], [21], who found that flexible inventory systems outperform fixed-order 
models in unstable markets. Furthermore, correlation analysis between forecasted and actual de-
mand (r > 0.98) validated the model’s predictive reliability, consistent with [4], who linked high cor-
relation coefficients to enhanced forecasting–control integration in supply chain systems. For SME-
scale manufacturers such as Maisatun Chili Chips, the application of a Min–Max–Forecasting hybrid 
strategy offers an empirically validated framework to minimize inventory costs without disrupting 
production flow. The results support [10], who emphasized that SMEs benefit from combining 
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forecasting tools with rule-based control systems. Moreover, [33] suggested that such hybrid sys-
tems enhance decision-making under uncertain supply environments, enabling SMEs to achieve cost 
savings and production continuity comparable to larger enterprises. 

This study further extends the findings of [34] by demonstrating that integrating accurate 
forecasting (MAPE < 1%) into Min–Max systems not only optimizes safety stock but also minimizes 
procurement cycle frequency, thereby reducing administrative and operational overheads. From a 
theoretical standpoint, the findings reinforce inventory control principles under dynamic market 
conditions. The empirical evidence suggests that forecasting-integrated inventory systems can 
bridge the gap between traditional deterministic models and modern predictive analytics ap-
proaches. This aligns with the hybrid forecasting frameworks proposed by [30], [31] which advocate 
for adaptive algorithms to improve material planning accuracy. Practically, the study contributes to 
the operational management literature by validating that Min–Max systems, when integrated with 
exponential smoothing forecasts, provide superior efficiency in SMEs with perishable raw materials, 
echoing findings by [29][33]. 

 
CONCLUSION 

Based on the results of research aimed at analyzing and comparing the effectiveness of the 

Min–Max Stock and Blanket Order methods in minimizing the total cost of raw material inventory at 

Maisatun Chili Chip SME, it was concluded that the integration of the Exponential Smoothing fore-

casting system with the Min–Max method proved to be the most efficient and adaptive inventory 

control strategy for demand fluctuations. The Exponential Smoothing forecasting model with a MAPE 

value of 0.883% showed very high prediction accuracy compared to Moving Average (1.338%), thus 

enabling more accurate planning to determine the minimum, maximum, and reorder points. Simula-

tion results show that the Min–Max method consistently produces lower total costs, namely IDR 

116,269,920 (2021), IDR 123,260,400 (2022), and IDR 128,466,720 (2023), compared to Blanket 

Order, which has more fluctuating costs and tends to be higher in the same period. The Min–Max 

system has also proven to be more stable in dealing with demand variations of ±10%, with the ability 

to maintain stock availability without causing significant excess or shortage of raw materials. The 

application of this hybrid Min–Max–Forecasting system provides cost efficiencies of 28–35% and im-

proves the effectiveness of the company's procurement schedule and cash flow. Theoretically, this 

study confirms that the integration of adaptive forecasting methods and dual-limit-based inventory 

control can bridge the gap between traditional deterministic models and modern predictive ap-

proaches. while in practical terms, these findings serve as a strategic reference for MSMEs in the food 

sector to implement data-driven inventory control policies that can improve efficiency, production 

continuity, and business resilience in the face of unstable market dynamics. 
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