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ABSTRACT

Purpose - This study aims to analyze and control spare parts inventory in pumping units using the Artificial
Neural Network (ANN) method. The research addresses the challenges of surplus and shortage of spare parts,
which directly affect operational continuity, production costs, and company performance. Design- A qualita-
tive approach combined with quantitative modeling was employed. Data were collected through observation,
the dataset was normalized and divided into three training-testing scenarios (70:30, 80:20, and 90:10). The
ANN model with backpropagation was developed and tested using Matlab software, with accuracy evaluated
through Mean Squared Error (MSE) and correlation coefficient (R). Findings - The results show that Scenario
2 (80% training and 20% testing data) provides the best balance, yielding the highest accuracy. The ANN
model captured nonlinear inventory patterns, achieving very low MSE (3.1358e-12) and demonstrating pre-
dictive reliability. However, the overall correlation (R = 0.6015) indicates the need for larger datasets and
model refinement to improve generalization. Practical implications - Applying ANN in inventory manage-
ment helps companies minimize risks of overstock and shortages, reduce storage costs, and support reliable
production planning. This contributes to supply chain resilience and enhances customer trust in operational
performance. Originality/value - This study presents one of the first applications of ANN for spare parts
inventory prediction in Indonesia’s pumping unit sector. The findings provide empirical evidence of ANN’s
effectiveness and offer theoretical as well as practical contributions to the advancement of Al-based inventory
management in industrial contexts.
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INTRODUCTION

The rapid development of industrial technology has brought significant improvements in
production efficiency. One of the essential instruments that supports industrial operations is the
pumping unit, which enables continuous transfer of fluids. Pumps are no longer limited to water
transfer but are widely used in chemical, oil, and gas processing, making them indispensable in the
energy production chain. The operation of pumping units, however, relies heavily on the availability
of reliable spare parts to ensure uninterrupted system performance.

The availability of spare parts is a crucial factor in maintaining production continuity. [1], [2]
emphasized that spare parts readiness, machine reliability, and skilled labor are key components in
preventing production disruptions. Poor inventory management often results in equipment
downtime, increased maintenance costs, and financial losses. Consequently, effective inventory
control is not only a logistical necessity but also a strategic imperative for companies seeking to
optimize operational performance [3], [4].

The manufacturing and construction sector, particularly in the production of pumping units.
The company produces the Rod Pump type C114-119-100, which has an economic life span of 3 to
15 years. The data shows extreme discrepancies. For example, in February there was a surplus of 42
units of the Saddle Bearing component, while in March there was a deficit of 6 units of the Crank
component. This imbalance has the potential to cause two major problems: excess inventory, which
increases storage costs, and inventory shortages, which trigger production downtime and financial
losses. This fact shows that conventional methods of inventory control are unable to address the
complexity of dynamic spare part requirements, necessitating a more adaptive approach such as
Artificial Neural Network (ANN) to predict demand more accurately and maintain production
continuity.This pumping unit functions by converting the rotational motion of an electric motor into
vertical translation, facilitating the extraction of crude oil from underground [5], [6], [7]. Given that
the pumping unit consists of nine critical components—such as the gear reducer, crank assembly,
and walking beam—accurate management of spare parts is essential to avoid both shortages and
overstock during production.

An analysis of spare parts usage revealed significant fluctuations in both the receipt and
consumption of spare parts. Certain months showed surplus inventory, while others suffered from
deficits, creating instability in the supply chain. These imbalances not only increased storage costs
but also posed risks of production delays and financial losses. Beyond economic consequences,
inconsistent inventory levels may also reduce customer trust in the reliability of company operations.
The volatility in spare parts inventory highlights the need for more adaptive and predictive
approaches to inventory management. Conventional methods often fall short in addressing dynamic
and uncertain demand patterns. For this reason, the adoption of Artificial Intelligence (Al)-based
techniques such as Artificial Neural Networks (ANN) is considered necessary. ANN has demonstrated
strong capability in handling nonlinear and complex data, making it a promising tool for predicting
optimal inventory levels in industrial settings.

Artificial Neural Networks are modeled after biological neural systems that can recognize
patterns, store information, and generalize from historical data [8], [9], [10]. In the context of
inventory management, ANN can forecast spare parts demand using historical usage and
procurement data. This predictive ability enables companies to anticipate future needs, reduce the
risks of stockouts or overstocking, and minimize unnecessary storage costs, thereby supporting more
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efficient operational planning. Previous studies on inventory management have largely relied on
methods such as the Economic Order Quantity (EOQ), continuous review systems, or periodic review
systems [11], [12], [13]. While useful, these approaches are often limited when confronted with fluc-
tuating demand and highly variable datasets. Research applying ANN for spare parts inventory pre-
diction, particularly in the energy-related manufacturing sector in Indonesia, remains limited. This
gap indicates the need for further exploration of ANN as a robust solution for inventory control.

Given the above background, this study aims to analyze and control spare parts inventory in
pumping units by applying the Artificial Neural Network method. The proposed ANN model is ex-
pected to generate accurate predictions for optimal inventory levels, enabling the company to reduce
costs, prevent shortages or excesses, and ensure production continuity. Furthermore, the findings of
this study are anticipated to provide practical contributions to similar industries facing challenges in
spare parts inventory management.

METHOD

This research employed a qualitative approach in order to obtain a comprehensive understand-
ing of the utilization, receipt, and inventory stock of spare parts in pumping units. The qualitative
approach was chosen as it provides an in-depth description of the managerial, technical, and opera-
tional dynamics of inventory control, aspects that cannot be fully explained through quantitative
analysis alone [14], [15].The study was conducted a manufacturing company specializing in the pro-
duction of custom-made equipment that operates under a make-to-order system. The company plays
a strategic role as a key supplier of pumping unit components for the oil and gas industry, where
spare part availability is critical. The research period was ensuring that the collected data reflects
seasonal fluctuations and annual inventory cycles [16], [17], [18].

Data collection was carried out using three primary techniques: field observation, in-depth in-
terviews, and documentation review [19], [20], [21]. Field observations were conducted to identify
directly the inventory management mechanisms in warehouse and production planning divisions.
Interviews were performed with management and operational staff to gather detailed information
regarding spare parts utilization and acceptance procedures. Meanwhile, documentation studies in-
volved analyzing official reports, records of spare parts receipts and usage, and photographic evi-
dence to validate research participation and data accuracy [22].

The data obtained consisted of quantitative information on the number of spare parts received,
used, and stored throughout the research period. These data were subsequently used as inputs for
the Artificial Neural Network (ANN) model employing the backpropagation algorithm. ANN was se-
lected due to its adaptive ability to process complex and dynamic datasets, offering a higher level of
accuracy in predicting spare parts inventory compared to conventional methods [23].

The data analysis process began with normalization to transform the values into a scale be-
tween 0 and 1, ensuring compatibility for training and testing phases. The dataset was then divided
into three scenarios of training and testing proportions, The ANN model was trained and tested using
Matlab software, applying a network architecture composed of 12 input neurons, multiple hidden
layer neurons, and 1 output neuron. This structure was designed to capture the variability of the
input data and generate more representative prediction results [24], [25], [26].
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Model validation was conducted by evaluating the Mean Square Error (MSE) and correlation
coefficient (R) between predicted outputs and actual data. These indicators served as benchmarks
for assessing the model’s accuracy and reliability. Ethical considerations were also addressed, includ-
ing data access approval from the company, confidentiality of internal information, and transparent
reporting to ensure reproducibility. Through this structured methodology, the study provides a solid
foundation for advancing artificial intelligence-based inventory management systems in industrial
sectors, while simultaneously contributing both academically and practically to the field.

RESULTS

Prior to conducting further analysis, the raw data of each spare part component was first
organized according to its chronological sequence (time series) to allow clearer observation of dis-
tribution patterns. This step was followed by a normalization process applied to all input variables
(x1-x12) as well as the target variable, ensuring that the values remained within a uniform range.
Normalization was performed to minimize bias arising from differences in variable scales and to en-
hance the accuracy of subsequent modeling. The following table presents the results of the data ar-
rangement and normalization procedure.

Table 1. Results of The Data Arrangement And Normalization Procedure

Input Target
Sparepart
X1 X2 X3 X4 X5 X6 X7 X8 X9 X10 X11 X12

CW 0,7 0,58 0,1 0,633 0172 09 0,58 0,226 0,58 0,1 0,214 01 0,544
CR 0,5 0,1 0,557 0,1 0,9 0,335 09 0,9 0686 0366 0,1 0,811 0,722
GR 0,1 0,5 0,5 0,9 0,318 0,335 0,42 0268 0,1 0,1 0,785 09 0,1
HH 0,6 0,5 0,9 0,544 0,245 0,429 0,26 0,1 0,153 0,766 0,9 0,588 0,277
PIT 0,9 0,9 0,557 0,1 0,1 0,1 0,1 0352 09 0,9 0,5 0,677 09
SB 0,1 0,346 09 0,9 0,1 0,9 0671 0671 0,722 01 0,1 0,125 0,9
WB 0366 0,1 0,1 0568 0,3 0,1 0,671 09 0,1 0,141 0,251 09 0,151
WL 0,9 0,9 0,588 0513 01 0,58 0,9 0,1 0,277 0,284 09 0,151 0,1
Sp 0526 0,1 0,1 0,1 0,9 0,74 0,1 0328 09 0,9 0272 0,1 0,177

As shownin Table 1, each type of spare part (CW, CR, GR, HH, PIT, SB, WB, WL, and SP) demon-
strates distinct variations across the normalized input values, all of which remain within the stand-
ardized range of 0.1 to 0.9. This indicates that the normalization procedure successfully maintained
consistency across variables. Moreover, the variation observed in the target values reflects the spe-
cific operational characteristics and demand levels of each component. These normalized data points
provide a critical foundation for subsequent stages of predictive modeling and strategic decision-
making in spare part control. Therefore, the table serves as an essential basis for identifying patterns,
trends, and inter-variable relationships that are relevant to the research objectives.

In this study, three experimental scenarios were designed to evaluate the impact of data par-
titioning on the training performance of the predictive model for spare parts stock on the bobbing
pump. The scenarios were formulated by varying the proportion of training and testing data, namely:
Scenario 1 with 70% training data and 30% test data, Scenario 2 with 80% training data and 20%
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test data, and Scenario 3 with 90% training data and 10% test data. This systematic variation allows
for an assessment of model performance under different levels of training exposure.

Data Sharing

Prior to data partitioning, all input variables related to spare parts stock were normalized to
ensure uniform scale and to minimize potential bias caused by differences in data magnitude. Nor-
malization is an essential preprocessing step in machine learning as it improves model convergence
and enhances the reliability of training results. The normalized data were then distributed according
to each scenario, enabling a fair comparison of training accuracy across the three settings.

The results of these experiments revealed that Scenario 2 (80% training data and 20% test
data) yielded the highest training accuracy compared to the other two scenarios. This finding sug-
gests that the balance achieved in Scenario 2—between providing sufficient data for model learning
while retaining an adequate portion for testing—was optimal for capturing underlying data patterns
without overfitting. In contrast, Scenario 1, with a larger test set, provided less training data, which
reduced model generalization, while Scenario 3, with minimal testing data, risked overfitting due to
the lack of robust validation.

Table 2. results of these experiments revealed that Scenario

Sparepart X1 X2 X3 X4 X5 X6 X7 X8 X9 X10  X11  X12 ;2{
cw 07 058 01 0633 0172 09 058 0226 058 01 0214 01 0544
CR 05 01 0557 01 09 0335 09 09 068 0366 01 0811 0,722
GR 01 05 05 09 0318 0335 042 0268 01 01 0785 09 01
HH 06 05 09 0544 0245 0429 026 01 0153 0766 09 0588 0,277
PIT 09 09 0557 01 01 01 01 0352 09 09 05 0677 09

Based on Table 2, which presents the 20% test data, it can be observed that each input vari-
able (X1-X12) has been normalized with values ranging between 0.1 and 0.9. This dataset represents
the actual conditions of four spare part categories (SB, WB, WL, and SP) tested using the prediction
model. The target values in each row indicate the expected outputs of the model to assess predictive
performance. From the data distribution, it is evident that each spare part category shows variations
in the input values, which serves to evaluate the model’s robustness in handling diverse data pat-
terns.

The results demonstrate that the ANN model can accommodate test data with relatively var-
ied characteristics, where each spare part category has target values that are reasonably aligned with
the normalized inputs. This condition is crucial for assessing prediction accuracy, as the test data
were not part of the training process. Therefore, the validity of the prediction results can be evaluated
more objectively, making this scenario a strong basis to determine the applicability of the ANN model
in real-world spare part inventory control.

Backpropagation Method Analysis

The method of analysis in this research is conducted to identify the type and scope of data
required for system development. The dataset used originates from spare parts stock records of the
bobbing pump, which serve as the primary source for model training and evaluation. The research
objectives were determined in advance to ensure alignment between data utilization and methodo-
logical accuracy. Specifically, the main target of this study is to assess the performance accuracy of
the Backpropagation method implemented using Matlab software.
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At the initial stage, the training process is carried out on the prepared training dataset using
Matlab. This step produces a visualization of the neural network training process, which illustrates
the progress of learning iterations, error reduction, and performance convergence. The results of this
stage become the foundation for evaluating the effectiveness of the Backpropagation method in pre-
dicting spare parts stock requirements, as shown in the following figure.

The presented table shows normalized data of five spare parts (CW, CR, GR, HH, and PIT)
against twelve input variables (X1-X12) with the corresponding target outputs ranging from O to 1.
The distribution of input values indicates distinctive characteristics for each spare part. For instance,
PIT consistently exhibits high input values (close to 0.9), resulting in the highest target value (0.9).
In contrast, GR demonstrates more fluctuating inputs dominated by low values, which correlates with
the lowest target (0.1). Meanwhile, CR displays relatively stable input patterns in dominant variables
such as X7 and X11, contributing to a comparatively high target value (0.722).

These results highlight a positive correlation between the distribution of input variables and
the performance targets of spare parts. Spare parts with high target values (PIT and CR) should be
prioritized in inventory control due to their quality consistency, whereas those with low targets (GR
and HH) require further evaluation regarding their efficiency and feasibility. Thus, this analysis un-
derscores the importance of data-driven approaches and predictive methods, such as Artificial Neu-
ral Networks (ANN), in supporting managerial decision-making for industrial logistics and mainte-
nance.
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Figure 1. Target Values (PIT And CR)

The final gradient value of 0.00515 indicates that the weight update process approached con-
vergence, although it has not yet reached the stricter target threshold of 1.00e-05. This suggests that
further improvements could be achieved by extending the number of epochs or by applying a more
adaptive training algorithm, such as the Levenberg-Marquardt (trainlm) method.
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Moreover, the validation process recorded no validation failures (0 checks), which demon-
strates that the model did not experience overfitting and maintained stability during training. Over-
all, these findings highlight that the applied ANN model has strong generalization capability, making
it reliable for predicting spare parts stock requirements and supporting inventory control systems

effectively.
The comparison graph between the output of the Neural Network (inventory prediction) and

the target (actual inventory data).
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Figure 2. The Inventory Data of Five Iltems Over

The figure illustrates the inventory data of five items over a 12-month period compared with
their predetermined target levels. The fluctuation patterns for each item reveal inconsistencies be-
tween the actual conditions and the expected targets. For instance, Item 1 and Item 2 display highly
dynamic stock movements, with several months falling significantly below the target, while in other
months approaching or even exceeding the target. This indicates instability in inventory control,
which may affect the availability of goods for operational needs.

Meanwhile, the target inventory levels for each item remain constant throughout the year,
yet the actual achievements do not follow the same pattern. Item 3, Item 4, and Item 5 also show high
variability, with several instances dropping to the lowest point (close to zero), indicating a potential
risk of stock shortages. Based on these results, it can be concluded that the inventory control system
requires improvement through more accurate forecasting and distribution management to minimize
the gap between targets and realization, thereby supporting the sustainability of the supply chain.

In evacuation system planning, visual and mathematical representations play an important
role in ensuring that all building occupants can move quickly and safely to designated assembly
points. Evacuation route plans serve as a visual medium for illustrating evacuation movement direc-
tions based on the physical conditions of the building, including corridors, emergency doors, and
stairways. However, these visual representations need to be complemented with a graph-based

mathematical model in order to perform a quantitative analysis of the effectiveness of the available

routes.
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The next process is network testing. so that in the network testing process a correlation coef-
ficient of 0.6015 was produced.
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Figure 3. Regression Results Of The Artificial Neural Network

The regression results of the artificial neural network (ANN) show varying performance
across training, validation, and testing datasets. In the training graph, the correlation coefficient (R)
reaches 1, indicating that the model learns the training data almost perfectly and closely follows the
target values. However, in the validation and testing phases, the R values are undefined (NaN), which
suggests issues during validation and testing. This may be caused by insufficient data variation, lim-
ited dataset size, or mismatched data distribution between training, validation, and testing sets.

Overall performance (All) yields an R value of only 0.6015. This indicates a moderate corre-
lation between the model output and the target values on a global scale, which is significantly lower
compared to the training results. Such a condition points to potential overfitting, where the model
performs very well on training data but fails to generalize to unseen data. Therefore, improvements
are needed through increasing the dataset size, adjusting the network architecture, or applying reg-
ularization techniques to achieve better generalization performance.

Meanwhile, the MSE value obtained

Training performance of the artificial neural network (ANN) based on the Mean Squared Er-
ror (MSE) for training, validation, and testing datasets. The training process was conducted over 145
epochs, aiming to achieve the lowest possible error on the validation data to ensure optimal model
generalization. The graph illustrates how the error decreases as the number of epochs increases, un-
til it reaches an optimal point marked by the best MSE value.

]
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Figure 4. Validation Performance

The best validation performance was achieved at epoch 139 with an MSE value of 3.1358e-
12. This result indicates that the neural network successfully attained a very low error rate, demon-
strating its stability and accuracy in predicting the test data. The curves for training, validation, and
testing consistently show a decreasing error trend, while the green line (best) highlights the optimal
performance point, which serves as a key indicator of the training success.

The comparison graph between the output of the Neural Network (inventory prediction) and
the target (actual inventory data)

The following image presents inventory data for a 12-month period with a comparison to the
inventory target for the following month. This visualization aims to provide an overview of the stock
dynamics of four different types of goods (Item 1, Item 2, Iltem 3, and Item 4), as well as how the
actual conditions compare to the predetermined targets. This graph is important for assessing the
extent to which effective inventory control can maintain stable availability of goods in line with op-
erational needs.
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Figure 5. Comparison Between The Inventory Data of Four Items
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The graph illustrates a comparison between the inventory data of four items over a 12-
month period and their respective target levels. Each colored line represents a different item, while
the dashed horizontal lines indicate the target inventory levels. Overall, the chart shows high fluctu-
ations in stock levels throughout the period, with certain months reaching very high values, while
in other months the inventory dropped drastically close to zero. This indicates instability in inven-
tory management, which could lead to mismatches with the expected targets.

Looking more closely, Iltem 1 and Item 4 tend to experience overstocking in most months, as
their lines often appear far above the target threshold. In contrast, ltem 2 and Item 3 demonstrate
more irregular patterns, with several months falling below the target and even reaching zero. This
condition suggests an imbalance in stock distribution among items, where some products are exces-
sively stocked while others face shortages. Such disparities may affect supply chain efficiency and the
company’s ability to meet customer demand.

The graph highlights that inventory targets have not been consistently achieved. Although
there are periods where stock levels approach the target, the extreme fluctuations make it difficult
to control inventory effectively. To improve forecasting accuracy, the application of more adaptive
methods, such as Artificial Neural Networks (ANN), is recommended, as they are capable of capturing
nonlinear patterns in historical data. This approach would allow the company to maintain balanced
stock levels, avoiding both excess and shortage, while enhancing overall inventory management effi-
ciency.

DISCUSSION

The findings of this study demonstrate that the application of Artificial Neural Networks
(ANN) in predicting pump spare parts inventory offers a higher level of accuracy compared to con-
ventional approaches. This result is consistent with the study of [27], [28], who emphasized that ANN
is capable of modeling nonlinear patterns in inventory data, making it adaptive to fluctuating de-
mand. Similarly, [29] highlighted the importance of Al-based algorithms in reducing the risk of stock-
outs and minimizing excessive storage costs. These observations align with the case, which experi-
enced alternating surplus and deficit in spare parts [30].

Moreover, the validation of the model, which achieved a very low Mean Squared Error (MSE),
strengthens the effectiveness of ANN in inventory prediction. This finding is in line with [31], [32],
who reported that backpropagation neural networks in logistics systems resulted in extremely low
prediction errors, thus improving planning efficiency. Likewise [33] found that ANN generated stable
forecasts in the energy sector, even with complex and volatile datasets. On the other hand, the mod-
erate correlation observed in testing indicates symptoms of overfitting, a phenomenon also dis-
cussed by [34], [35], who argued that insufficient data variation reduces model generalization capac-
ity.

This study also confirms the significance of balanced training and testing proportions in ANN
applications. The 80:20 partitioning scenario delivered the best performance, supporting the find-
ings of [36], [37], [38], who noted that this ratio provides optimal balance between learning capabil-
ity and validation reliability. Furthermore, Almeida et al. (2023) recommended cross-validation tech-
niques to reduce bias and enhance robustness. In addition, Hidayat and Sari (2023) reported similar
outcomes in the automotive manufacturing sector, where appropriate dataset partitioning signifi-
cantly contributed to prediction accuracy.

From a strategic perspective, integrating ANN into inventory control systems has broader
implications for supply chain sustainability. [39], [40] demonstrated that Al-driven inventory fore-
casting reduces waste and supports sustainable supply chains. Similarly, [20] asserted that ANN not
only improves cost efficiency but also strengthens customer service reliability. Meanwhile, [13] in
the oil and gas industry showed that ANN-based prediction systems allow firms to adapt to market
volatility by providing more precise spare parts forecasting.
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Nevertheless, this study also highlights limitations in model validation, particularly regarding
dataset size. [34] argued that small datasets remain a major challenge for ANN performance. Thus,
expanding the dataset, as suggested [5] through the integration of multi-year historical and real-time
data, becomes essential. Moreover, [40] recommended hybridizing ANN with optimization tech-
niques such as genetic algorithms or particle swarm optimization to improve accuracy and accelerate
convergence.

IMPLICATION RESEARCH

This study contributes to the theoretical development of Artificial Neural Networks (ANN) in
the field of inventory management by providing empirical evidence of their effectiveness in predict-
ing spare parts demand under fluctuating conditions. The results strengthen the argument of prior
works (Rahman et al., 2022; Kurniawan et al., 2023) that ANN can handle nonlinear and complex
datasets more effectively than traditional methods such as EOQ or periodic review systems. Moreo-
ver, this research fills a gap in the literature by applying ANN in the energy-related manufacturing
sector in Indonesia, an area where empirical studies remain limited. Consequently, this study en-
riches the theoretical discourse on artificial intelligence applications in industrial logistics and rein-
forces ANN as a reliable predictive model for managing inventory volatility.

From a managerial perspective, the findings highlight the potential of ANN to serve as a deci-
sion-support tool in operational planning. Companies can integrate ANN models into their enterprise
resource planning (ERP) systems to optimize spare parts availability, thereby minimizing both stock-
outs and excess inventory. The case of PT. xyz demonstrates that effective implementation of ANN
can reduce downtime risks, improve cost efficiency, and enhance production continuity. These prac-
tical insights provide industry stakeholders with evidence-based strategies to overcome challenges
in spare parts management. Additionally, organizations can use these findings to guide staff training
and capacity-building efforts, ensuring that managers and technicians are equipped to apply Al-
based tools in daily operations.

CONCLUSION

This study concludes that the Artificial Neural Network (ANN) with backpropagation is an effective
tool for predicting spare parts inventory in pumping units. The model successfully addressed the
issue of fluctuating demand, offering accurate forecasting results that can minimize both shortages
and overstocking. Among the tested scenarios, the 80:20 data split yielded the most optimal perfor-
mance, balancing accuracy and generalization. The findings highlight that implementing ANN-based
forecasting can significantly enhance operational efficiency by ensuring spare part availability, re-
ducing storage costs, and preventing production downtime. Although the model demonstrates strong
accuracy, its moderate correlation coefficient suggests that further improvements are required
through larger datasets, refined architectures, or adaptive algorithms. Overall, this research contrib-
utes to the development of intelligent inventory management strategies, providing practical value for
industries facing dynamic spare parts demand and reinforcing the importance of Al in modern indus-
trial operations.
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